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Abstract Microtubules have been in the focus of bio-
physical research for several decades. However, the con-
fusing and mutually contradictory results regarding their
elasticity and fluctuations have cast doubt on their present
understanding. In this paper, we present the empirical
evidence for the existence of discrete guanosine diphos-
phate (GDP)—tubulin fluctuations between a curved and a
straight configuration at room temperature as well as for
conformational tubulin cooperativity. Guided by a number
of experimental findings, we build the case for a novel
microtubule model, with the principal result that microtu-
bules can spontaneously form micron-sized cooperative
helical states with unique elastic and dynamic features. The
polymorphic dynamics of the microtubule lattice resulting
from the tubulin bistability quantitatively explains several
experimental puzzles, including anomalous scaling of
dynamic fluctuations of grafted microtubules, their appar-
ent length—stiffness relation, and their remarkable curved—
helical appearance in general. We point out that the mul-
tistability and cooperative switching of tubulin dimers
could participate in important cellular processes, and could
in particular lead to efficient mechanochemical signaling
along single microtubules.
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Introduction

Microtubules (MTs) are fascinating biological macromole-
cules that are essential for intracellular trafficking, cell
division, and maintenance of cell shape. They display unique
elastic and dynamic behavior, inherited by their complex
self-assembling nanotube structure. Surprisingly, despite an
enormous accumulation of knowledge about their structure,
the static and dynamic properties of MTs have challenged all
attempts at a fully coherent interpretation. In this paper we
develop the line of thought leading towards a new theory that
provides a more comprehensive understanding of these
properties of MTs. The fundamental result is that stabilized
MTs spontaneously form large-scale superhelices of micron-
sized pitch and diameter. The MT’s superhelical structure
turns out to be a consequence of a cooperative interaction
between its individual subunits that can sustain several stable
curved conformations. Cooperativity of fluctuating internal
degrees of freedom in combination with the cylindrical MT
symmetry lead to a helical state with very unique charac-
teristics in the world of macromolecules: MTs are helices
that are permanently but coherently reshaping, i.e., changing
their reference ground-state configuration, due to thermal
fluctuations. In particular, when clamped by one end, MTs
undergo an unexpected zero-energy motion. As we will see,
this could be the key to a consistent interpretation of certain
challenging experimental results not captured by the con-
ventional scenarios and models. It is worth remarking
that the large majority of experiments probing the above-
mentioned properties are in vitro experiments on MTs with
stabilizing drugs. We stress this point, as the experimentally
prevalent presence of stabilizing agents is not innocent and
could modify the properties of MTs. Nevertheless, there are
reasons to believe that the theory developed here might be
valid also for nontreated MTs.
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Before embarking on the road to a “polymorphic MT
theory,” we first review the conventional understanding of
the common MT properties as well as some key experi-
ments which will be our necessary guides towards the
model we propose. This paper, which extends and deepens
a previous short presentation of the idea of polymorphic
MTs (Mohrbach et al. 2010), is composed of two parts. In
the first part, we provide conceptual and graphical expla-
nations of the ideas behind the model and investigate
consequences of the polymorphic MT model developed
herein. We hope that this part is self-consistent and didactic
enough that a general reader can grasp the basic underlying
ideas. In the second, more technical part, the mathematical
model is developed and quantitative results are presented.
The details and derivations are left to an extensive
appendix.

Short review of what is understood about microtubules

Microtubules are cytoskeletal protein filaments of eukary-
otic cells fulfilling different structural and mechanical
functions in the cell: MTs act as “cellular bones” strongly
influencing the cell shape, constitute the main routes for
molecular motor-mediated intracellular cargo transport
(Howard 2001; Amos 1991), and perform other important
tasks such as stirring the cytoplasm (Kulic et al. 2008).
Besides, MTs play a central role in the assembly of the
mitotic spindle during cell division and are at the heart of
the functioning of cilia and flagella (Alberts et al. 2002).
This versatility of MTs in a variety of biological functions
mainly relies on their unique high stiffness and on their
dynamics of assembly and disassembly. The high rigidity
of MTs (similar to hard plastic) is due to their structure,
which is known in exquisite detail from three-dimensional
(3D) electron microscopy reconstructions (Nogales et al.
1999; Huilin et al. 2002): MTs are hollow tubes whose
walls are formed by assembly of a variable number N of
parallel protofilaments (PFs). The PFs themselves are built
by head-to-tail self-association of the of-tubulin heterodi-
mer protein subunit (endowing MTs with a polarity) whose
structure has been resolved by electron crystallography
(Nogales et al. 1998; Lowel et al. 2001).

In vivo, MTs most commonly appear with 13 PFs
(Bouchet-Marquis et al. 2007) (although there are excep-
tions depending on the cell type), whereas in vitro a variety
of structures with PF number ranging from N = 9 to 16
were observed (Wade et al. 1990; Chretien 1991). Transi-
tions between different lattice types (mostly with gain or
loss of one PF) within a single MT are also frequent (Ray
et al. 1993; Chrétien et al. 1992; Chretien 2000). The MT
lattice can accommodate these different structures by
twisting the PFs around the central MT axis, although this
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process is energetically costly. The typical lattice twist
repeat lengths (pitches) are: +3.4, 425, and —6 pm for
MTs with N = 12, 13, and 14 PFs, respectively, with “+”
and “—” denoting right and left-handed twists (Wade et al.
1990; Chretien 1991, 2000; Ray et al. 1993; Chrétien et al.
1992). As we will see, the lattice twist is an essential
property of the model proposed below. Any deviation from
the most frequent, energetically favorable, and thus less
twisted configuration N = 13 implies an internal prestrain
in the MT lattice. The latter stress can locally deform the
end portions of the lattice or even destabilize it (Hunyadi
2007).

Another internal prestrain in the MT lattice is believed
to be caused by the tubulin subunit, which upon incorpo-
ration into the lattice hydrolyzes a bound guanosine tri-
phosphate (GTP) molecule, converting it quickly into a
GDP—tubulin form which has the tendency to form a
curved state, curling radially away from the axis (Man-
delkow et al. 1991; Nogales et al. 2003). The constraint
imposed by the MT lattice however maintains the GDP-
tubulin dimers in a straight unfavorable state, in turn
trapping mechanical prestrain. In this conventional view,
MTs are seen as internally prestrained but intrinsically
straight Euler beams. The GDP-tubulin prestrain is also
believed to trigger rapid depolymerization called the
polymerization “catastrophe” (Mitchison 1984). MT sta-
bility is regulated either by the presence of a thin layer of
as yet unhydrolyzed GTP tubulin dimers at the growing
MT end [the so-called GTP-cap model, (Erickson 1992;
Janosi et al. 2002)] or by the binding of MT-associated
proteins (MAP) or of drugs such as taxol.

What is not understood about microtubules
Mechanical properties of stabilized MTs

The presence of the polymerization dynamics often presents
an obstacle to investigation of the mechanical properties of
the MT lattice. As previously mentioned, it can be switched
off by stabilizing agents such as taxol or MAPs. In the bulk
of the available in vitro studies, taxol stabilization has been
the experimental method of choice for investigating the
elastic properties of MT. It is believed that taxol maintains
tubulin dimers in an approximately straight conformation
and thus prevents depolymerization (Arnal 1995; Amos
1999; Xiao et al. 2006). However, direct electron micros-
copy (EM) investigations of single taxol-GDP PFs (Elie-
Caille et al. 2007) reveals a more complex and interesting
picture. A taxol-stabilized single PF can in fact coexist in
several conformational states with comparable free ener-
gies: a straight state x5 ~ 0 and a weakly curved state with
intrinsic curvature Kpf ~ 1/250nm (Fig. la). A third,
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Fig. 1 Empirical evidence for tubulin bistability: a A single taxol-
stabilized protofilament can coexist in a straight xpr ~0 and a
slightly curved kpp ~ 1/250 nm state (reproduction from Elie-Caille
et al. 2007); b Taxol-stabilized microtubules in gliding assay
experiments can switch to a stable circular state and move on circular
tracks (from Amos 1991; Vale et al. 1994). Microtubules are
occasionally observed to switch back and forth between the circular
and straight states. ¢ Taxol-stabilized microtubules form a three-
dimensional helicoid structure with 15 pm pitch (from Venier et al.
1994)

highly curved state with Klﬁ% ~ 1/20nm additionally
appears after longer observation periods. Notably, Elie-
Caille et al. (2007) pointed out a cooperative nature of the
straight to curved transition within single PFs. These
important findings of several conformational tubulin dimer
states and cooperative interaction between them will form a
central ingredient of our model below.

Going from a single protofilament to the whole tube, a
central mechanical property of interest often measured for
stabilized MTs is the persistence length, defined as I, = B/
kgT. Here B o Y stands for the flexural rigidity, which for
an isotropic beam is proportional to its elastic Young’s

modulus Y. Several experimental approaches have been
developed to measure the bending stiffness of taxol-stabi-
lized MTs. One method consists in measuring the thermal
shape fluctuations of MTs via dark-field microscopy (Gittes
et al. 1993; Venier et al. 1994) or fluorescence light
microscopy (Mickey and Howard 1995). Alternatively in
several other experiments, /, has been determined by
applying controlled bending forces via hydrodynamics
(Venier et al. 1994), optical tweezers (Felgner et al. 1996;
Kikumoto et al. 2006; Kurachi et al. 1995; Takasone et al.
2002), and atomic force microscopy tips (Kis et al. 2002).
Interestingly, Gittes et al. (1993) observed that stabilized
MTs are not perfectly straight but rather contain some form
of quenched curvature disorder which needs to be sub-
tracted from the measurements. In the same vein, dark-field
imaging of the thermal fluctuations of the free end of
axoneme-bound MTs shows that taxol-stabilized MTs
adopt a three-dimensional helicoid structure (Venier et al.
1994) (we return to this point below).

The persistence length obtained from these different
experiments is placed in the range 1-8 mm, with some
newer studies going down to 0.1 mm (cf. below). For a
standard semiflexible polymer (such as actin or DNA) we
expect [, to be a material constant, in particular being
independent of the filament length. However, for MTs, the
experimental /, data are not only highly scattered but
extremely confusing on this point. That the persistence
length could indeed depend on the MT length was first
mentioned and observed by Kurachi et al. (1995) and
Takasone et al. (2002) and confirmed by other experi-
mental measurements probing either the thermal movement
(Vanden Heuvel et al. 2007) or the active bending defor-
mations by electrical fields of individual taxol-stabilized
MTs gliding on a kinesin-coated surface (Vanden Heuvel
et al. 2008; Kim et al. 2008). In particular, these tech-
niques gave, for short MT segments with submicron length,
persistence lengths between 0.08 and 0.24 mm.

This intriguing “length-dependent stiffness” was also
investigated by Pampaloni et al., who measured the lateral
fluctuations of MTs grafted to a substrate (Pampaloni et al.
2006). These authors found a [, falling within the range
0.11-5.04 mm for MT lengths varying from 2.6 to
47.5 um, with a strong linear correlation between length
and [,. A similar experiment done by Taute et al. (2008)
measured the longest relaxation time 7.,,x(L) of MTs of
various lengths L. It was found that MTs exhibited
unusually slow thermal dynamics compatible with
Tmax r’ (cf. Fig. 9), in sharp contrast to standard semi-
flexible filaments with Ty o< L. Brangwynne et al.
(2007) reported that the relaxation time for long MTs
(L > 10 pm) extracted from two-dimensional (2D) shape
analysis of taxol-stabilized fluorescent MTs shows an
anomalous dynamics on short scales as well. Furthermore,
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it has also been experimentally found that the rigidity of
MTs depends on their growth velocity (Janson 2004). All
these experiments measuring the bending stiffness and the
bending dynamics led the community to the conclusion that
the “beam of life” cannot be seen as a simple Euler beam.
Its complex internal structure should determine its elastic
and dynamical properties. However, which internal mode
contributes to the now obvious elastic complexity is the
important question, a convincing answer for which is still
lacking.

Helices and rings

Even more intriguing than the issue of MT elasticity is
perhaps the question: What is the ground state of a MT?
While the naive answer—a straight rod—would be the
most accepted view, a number of experiments put this
mundane, simplistic picture in doubt; for instance, wavy
sinusoidal and circular shapes are frequently observed
when MTs are adsorbed to glass surfaces or confined
between them. In this confined case, Fourier mode anal-
ysis of MT deformations systematically reveals that a few
discrete modes have larger amplitude than the fluctuations
around them (Gittes et al. 1993; Brangwynne et al. 2007,
Janson 2004; cf. also Vanden Heuvel et al. 2007, supple-
mentary material). This is a strong hint of the presence of
some type of “frozen-in” curvature, dynamically quen-
ched on experimental time scales. Likewise in motility
assays, it is often seen that, when MTs glide over a surface
coated with molecular motors, they follow wavy sinusoi-
dal and often circular tracks (Amos 1991; Vale et al.
1994) (cf. Fig. 1b). In this context, particularly interesting
is the observation by Amos and Amos (1991) of the for-
mation of permanently circling MTs (see Fig. 1b). These
unusual stable circular gliding structures persisted for
many cycles and occasionally straightened again. As
written by Amos (1991), this suggests that “an intact
tubular polymer is capable of holding more than one
conformational state without the help of an external
force.” From EM images it was inferred that the under-
lying mechanism stems from the balance of individual
taxol-GDP—tubulin dimers between two or more different
stable conformations (Amos 1991).

An even clearer hint towards the real nature of the
frozen-in curvature was, as already mentioned, discovered
by Venier et al. (1994) (Fig. 1c), who described stabilized
MTs as “wavy periodic shapes” with half-period of about
7-8 um. This observation, combined with the fact that
MTs often went out of focus, led the authors to “suggest
that taxol-treated microtubules may adopt a three-dimen-
sional helicoid structure of 15 pum pitch.”

Therefore, it seems that the MT curvature is a persis-
tent attribute attached to its lattice. Any serious attempt to
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fully understand the complexity of MT elasticity cannot
avoid the question of its ground state. Indeed, under-
standing fluctuations around a particular state will be
futile as long as the origin of the state itself remains
obscure.

The soft shear model

A first theoretical attempt to cope with some aspects of
the described MT mechanical complexity was the “soft
shear model” (also called the “Timoshenko beam model”
or “anisotropic composite material model”) (Kis et al.
2002; Pampaloni et al. 2006; Heussinger et al. 2007,
Mohrbach 2007). In this model the MT is considered as
an anisotropic fiber-reinforced material (Kis et al. 2002;
Pampaloni et al. 2006) with the tubulin protofilaments
acting as strong fibers weakly linked with easily shearable
interprotofilament bonds. Some specific equilibrium sta-
tistical and mechanical properties of this model were
investigated by Heussinger et al. (2007) and Mohrbach
(2007). An interesting peculiarity and inherent conse-
quence of this model is that any local lattice deformation
gives rise to a long-distance curvature relaxation (Mohr-
bach 2007) and can lead to a long-range interaction along
the MT contour. This aspect of the soft shear model
(SSM) is in phenomenological agreement with coopera-
tive deformations induced by enzymes such as katanin.
Furthermore, this model predicts a length-dependent per-
sistence length which approximately resembles the mea-
sured behavior (Pampaloni et al. 2006; Taute et al. 2008).
However, in detail it suffers from a number of difficulties
and inconsistencies, in particular:

e The ground state of the SSM is straight, in conflict with
the observation of a helical ground state (Venier et al.
1994).

e The SSM does not allow for lattice multistability as
observed by Amos and Amos (1991).

e The predicted value of the shear modulus is extremely
small (Pampaloni et al. 2006; Taute et al. 2008;
Mohrbach 2007) (10° to 10° times smaller than the
Young’s modulus). This would imply very strong
shearing in bent microtubule structures. This however
is unsupported by other experimental evidence. Indeed,
observations of straight and highly bent MTs show that
bending does not significantly modify the relative
position of the interprotofilament bonds (Chrétien et al.
1998).

e The dynamics of clamped MTs (Pampaloni et al. 2006;
Taute et al. 2008) does not emerge naturally from the
SSM. To reach agreement and fit the experimental
dynamics, the shear model needs to introduce an ad hoc
internal dissipation of unclear origin.
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e For short MTs (<4 pum) that model is very far off and
disagrees with the “plateau” region of the bending
stiffness versus length relations (cf. Fig. 3 in Taute
et al. 2008).

Careful reanalysis of clamped MT experiments (cf.
Figs. 2, 3 in Pampaloni et al. 2006; Taute et al. 2008)
reveals two features not captured by the SSM: the persis-
tence length scales for large L approximately as ~L
(without signs of saturation) while the relaxation times
scale as ~L>. This exotic behavior naively suggests the
presence of a limited angular hinge at the MT clamping
point. On the other hand, artifacts that could trivially lead
to a “hinged behavior” (such as loose MT attachment and
punctual MT damage) were specifically excluded by
experiments (Pampaloni et al. 2006; Taute et al. 2008).

a
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Fig. 2 Elements of the “polymorphic tube model.” a The GDP-
tubulin protofilaments can fluctuate cooperatively between two
discrete states. The curved, ¢ = 1 state is energetically preferred
over the straight, ¢ = 0 state with an energy gain E = —AG. A
junction between straight and curved states along the same protofil-
ament is penalized by a coupling constant E = 4J. b Competition
between tubulin switching energy and elastic lattice strain energy
leads to spontaneous symmetry breaking: MT bends to a randomly
chosen direction and assumes a nonzero polymorphic order parameter
P. The energy becomes invariant with respect to an arbitrary rotation
of the polymorphic phase angle ¢

Fig. 3 The straight state of the microtubule becomes unstable and
forms a spontaneous bend with fixed curvature pointing towards a
randomly chosen direction. The microtubule can assume one of the
N degenerate ground states and switches between them at no energy
cost; the effective potential has a shape reminiscent of a Mexican hat

Considering all these obstacles, it becomes increasingly
clear that the solution to all the puzzles requires a new and
radically different hypothesis.

Idea of polymorphic microtubule dynamics

The new scenario proposed here is based on the hypothesis
of cooperative internal MT lattice dynamics. The two
central assumptions of our model are as follows:

(I) The taxol-GDP-tubulin dimer is a conformationally
multistable entity and fluctuates between at least two
states on experimental time scales: a straight and an
outwards curved state (Figs. la, 2a).

(I) There is a nearest-neighbor cooperative interaction of
tubulin states along the PF axis.

Note that assumption I is very different from the con-
ventional picture where GDP-tubulin has only one ener-
getically favorable (curved) state. We will show that a
model based on assumptions I and II straightforwardly
leads us to the very origin of MT (super)helicity and pro-
vides a coherent explanation for static and dynamic mea-
surements in thermal fluctuation experiments.

In contrast to the soft shear model, the present model is
elastically isotropic but the monomer curvature is bistable.
As we will see, the ground state in this new model is a
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highly degenerate, three-dimensional helix fluctuating
between many equivalent configurations.

Conformational symmetry breaking and helix
formation

In this section we provide a simple pictorial panorama of
the consequences of assumptions I and II. What happens
when tubulin dimers obeying assumption I are trapped in
the circularly symmetric MT lattice? Starting from
assumption I we imagine that the straight and curved
GDP-tubulin states have a certain energy difference
AG > 0, with the curved state being slightly more favor-
able. The strict preference for the curved state is however
only true if the tubulin dimers are free, i.e., not confined to
the lattice. The situation becomes more interesting once
they are incorporated into the lattice. Obviously the out-
wards bending tendency of the curved state is in conflict
with the geometry of the lattice. Switching a dimer on one
MT side will frustrate the dimers on the opposite side of the
tube and prevent them from switching at the same time. On
the other hand, the direct neighbors of the curved dimer (on
the same MT side) will profit and switch more easily to the
curved state, as the lattice is already slightly “prebent” in
the correct direction. This peculiar interplay of negative
and positive interactions gives rise to a clustering of curved
dimer states into a single block on one side of the tube (cf.
Fig. 2b).

This immediately raises the question of the orientation
of this curved dimer block. Which MT side will be selec-
ted, and in which direction will the MT overall bend, can
only be decided by the process of spontaneous symmetry
breaking; that is, if the ground state is a curved dimer
block, it will be a highly degenerate state (see Fig. 3). In
turn, it can be expected to move through the lattice ther-
mally at nearly no energy cost (apart from some friction).
This is the most essential feature of the present model.

So far we have considered only a single MT cross-sec-
tion. If assumption II (cooperativity) were not to hold, the
curved state blocks would pick their sides at each section
completely independently. The tube would locally curve in
random uncorrelated directions, and the effect of tubulin
multistability would remain essentially invisible at larger
scale. However, according to assumption II, the blocks
become correlated in orientation and prefer to stack on top
of each other. Macroscopically, this would then lead to a
bent—in fact circular—MT if the PF were not twisted
around the central MT axis (see Fig. 2b). This provision
brings us to the final interesting point. As already men-
tioned, MT lattices are generically twisted; i.e., their PFs
are not strictly parallel. With a cooperative interaction
along the PFs—which are now twisting around the tube
axis—the final product of assumption I and II will be a
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long-pitched helix. The pitch of the helix should coincide
with the lattice twist repeat length: +3.4, 425, and —6 pm
for MTs with N = 12, 13, and 14 PFs, respectively. The
created “polymorphic helix,” however will not be unique
and will be able to reshape between its N indistinguishable
orientation states.

When we graft one end of such a polymorphic helix onto
a surface [as, e.g., performed by Pampaloni et al. (2006)
and Taute et al. (2008], the helix will still be able to switch
between the equivalent orientations and perform a motion
that we call “wobbling” (see Fig. 4). It is exactly this type
of motion that can give rise to the static and dynamic
effects measured by Pampaloni et al. (2006) and Taute
et al. (2008).

To see this, we can approximate the movement of a
clamped polymorphic helix that is switching between its
equivalent ground states with a “rigid conical rotor” (see
Fig. 4). For such a rotor the transverse displacement p of
the MT end grows linearly with its length L. Using the
naive definition of persistence length [, ~ L*/ 3< p2> (where
() is the ensemble average) and the fact that (p?) oc L?, this
apparent persistence length becomes proportional to the
length, i.e., [, o< L. This scaling (cf. Fig. 11) is in agree-
ment with the experimental results of Pampaloni et al.
(2006) and Taute et al. (2008), giving us the first hint that
the model is on the right track. Appendix E comments on
the robustness of this conical hinge-like motion against
limited local hindrance of the wobbling mode due to the
adsorbed part of the grafted MT.

Further encouragement comes from study of the
dynamics of the model. Making again the approximation of
arigid conical rotation (induced by wobbling) the observed

b
—
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1.2
403
—-—— e —
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Fig. 4 A clamped polymorphic microtubule with intrinsic lattice
twist attached at its end to a substrate (Pampaloni et al. 2006; Taute
et al. 2008) performs a peculiar movement. It forms a polymorphic
helix with N degenerate ground states and switches between them at
no energy cost. The approximately conical motion with opening angle
o leads to anomalous lateral fluctuations (p*)~o?L*, radically
different from all other semiflexible filaments
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unusual scaling of the longest relaxation time T,y L3
can also be easily understood. In fact, a slender object of
length L rotated along a conical surface has a friction
constant &, oc L3. In turn, the longest relaxation time is
given by the diffusional equilibration time on the cone, i.e.,
Tmax X Ero/kpT o< L (cf. Fig. 12). It turns out that the
model correctly predicts both the exponent and the pre-
factor of the experimental relaxation time.

In addition, it is further reassuring that the helical
ground state(s) of the model provides a rationale for the
observation of MT helices by Venier et al. (1994).

In vivo implications of microtubule polymorphism

The bulk of observations cited herein were made in vitro
on taxol-stabilized MTs. It is known that taxol inhibits MT
disassembly by maintaining the tubulin dimer in a state that
strongly favors polymerization. However, from the exper-
iments reported above it is also clear that taxol does not
suppress all tubulin conformational changes: the taxol—
GDP-tubulin dimer has multiple stable conformations
(Elie-Caille et al. 2007). How do these in vitro findings
relate to MTs in vivo?

It is a common empirical observation in many in vivo
systems that, despite their high bending stiffness, MTs are
often seen curved or highly wavy on micron scales (Bicek
et al. 2009; Brangwynne et al. 2006, 2007 ; Keating et al.
1997; Kaech et al. 1996; Samsonov et al. 2004); for
instance, in Bicek et al. (2009), highly sinusoidal MTs on
the periphery of living LLC-PK1 cells were observed.
These shapes are usually explained as a consequence of
motor-induced buckling opposed by a gel-like environment
that leads to finite-wavelength buckling (Brangwynne et al.
2006). While this “buckling in a gel” interpretation is
physically appealing, a closer look at the data in Bran-
gwynne et al. (2006) (in particular the accompanying
movie material) reveals an absence of correlation in
buckling directions of neighboring MTs. This observation
puts a question mark over the participation of a background
continuum gel, as in this case the strains in the gel would
necessarily propagate to neighboring microtubules and lead
to spatially correlated buckling events, in sharp contrast
with observations. Therefore, we are left with a robust
phenomenon of sinusoid, constant-wavelength MTs, but
without a definite interpretation so far.

The phenomenology of stable rings (Amos 1991) and
wavy sinusoidal MTs forming in gliding assays (Vale et al.
1994) is strikingly similar and visually indistinguishable
from the pure in vivo observations (Bicek et al. 2009;
Brangwynne et al. 2006, 2007; Keating et al. 1997; Kaech
et al. 1996; Samsonov et al. 2004). Indeed, in both situa-
tions highly curved lattice states of very similar magnitudes

kmr ~ 1 —2um~! are readily observed. This analogy

between in vivo and in vitro cases suggests that tubulin
dimers, both in vivo and taxol stabilized (in vitro), possess
an identical highly curved state (kIS ~ 1/20nm). This
highly curved state appears to be activated within the lat-
tice only under compressive loads and seems to be a uni-
versal property of GDP—tubulin itself, independent of taxol
stabilization.

On the other hand, the weakly curved state of taxol—
GDP-dimer (1§ ~ 1/300nm) is soft enough to be acti-
vated by thermal fluctuations. The empirical evidence for
the weakly curved state in vivo is far less obvious than for
the highly curved state. The slight deformations induced by
the former would be more difficult to distinguish from
other MT-deforming effects in living cells such as motors,
polymerization forces, presence of lattice defects, bun-
dling, and microtubule-associated protein action. However,
the observed phenomenology of length-dependent persis-
tence length of MTs growing from centrosomes in egg
extracts (Keller et al. 2008) (no taxol present) qualitatively
and quantitatively resembles the in vitro observations
(Pampaloni et al. 2006; Taute et al. 2008). This is one
more indication that the dynamic MT polymorphism could
persist also in vivo.

At least two possible biological implications of the
helicoidal polymorphic MT nature come immediately to
mind. First, a curved or helical beam under compressive
load responds like a mechanical spring and is therefore
much softer (in tension, compression, and bending) than a
straight beam. Therefore, a network of helical MTs might
be important for the overall mechanical compliance of the
cell. A perfectly straight MT buckled by an extracellular
load would be much more susceptible to mechanical failure
and depolymerization than a soft, compliant helix. Second,
helical shapes are geometrically (topologically) prevented
from side-by-side aggregation and can thus evade formation
of bundles, instead forming loose networks with many
fewer contacts. It appears that a tuned helicity (that can be
switched on or off) could be a good mechanical control
parameter for the formation of different cytoskeletal struc-
tures. While the bulk of the cytoplasmic MTs are preferably
in the loose network state (favored by helicity), in occa-
sional situations such as in neuronal axons, straight aligned
MTs are required. In such a situation, bundling could be
triggered by switching the lattice to the straight state.
Remarkably, in the process of axonal retraction, the straight
axonal bundle is destabilized (and eventually contracts
towards the cell soma) by an apparent transition of the MTs
to a wavy coiled state (Fridoon et al. 2000) very reminiscent
in shape to single wavy MTs from cell soma (Bicek et al.
2009; Brangwynne et al. 2006, 2007; Keating et al. 1997,
Kaech et al. 1996; Samsonov et al. 2004).
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In general, MT polymorphism might have other, less
obvious biological implications that still have to be iden-
tified. In particular, a more speculative possibility is that
tubulin’s allosteric multistability might also be a piece in
the puzzle of MT “catastrophes.” A cooperative curvature
switch might trigger a transition from growth to depoly-
merization. Maybe the most fascinating aspect could lie in
the possibility of signal transmission along single MTs via
a long-range conformational switch. If our model is cor-
rect, this is the most inherent and distinct consequence of
the underlying mechanism.

This concludes the qualitative description of the essen-
tial ideas behind the polymorphic tube model. In the fol-
lowing we switch gears and present in more quantitative
detail the mathematical model. The mathematically less
inclined reader is invited to browse through the figures and
comparisons with experiments, maybe pick up additional
concepts (such as polymorphic defects and their dynamics),
and jump to the “Perspectives” section, which underlines
the essential biological consequences.

The polymorphic tube model

Until now the discussion has been qualitative, whereas in
the following we build the mathematical model of the
polymorphic MT. We will provide quantitative arguments
and model experimental data, thus justifying a posteriori
the previous discussion. In this section, we focus on the
thermally induced weakly curved state in taxol-stabilized
MTs, leaving the case of mechanically induced highly
curved MTs for further work.

We model the GDP-tubulin dimer state by a two-state
variable o,(s) = 0, 1 corresponding to the straight and
curved state at each lattice site. n = 1, ..., N is the cir-
cumferential PF index, and s € [0, L] is the longitudinal
position variable along the MT centerline. We recall that
our model is based on the following assumptions:

(I) The taxol-GDP-tubulin dimer fluctuates between two
states—straight and curved (Fig. 2a)—with an energy
difference AG > 0 favoring the curved state. The
energy density resulting from the switching of tubulin
dimers (at a given MT section) is then given by

N
=20y 6 (1

with b ~ 8 nm being the dimer length.

(II) There is an Ising-type nearest-neighbor cooperative
interaction of tubulin states along the PF axis with an
interaction energy J > 0 favoring nearest-neighbor
dimers on the same PF to be in the same state. This
leads to the interaction energy density

€trans (5)
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1)(20,(s +b) — 1). (2)

N
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The final term required for our description is the elastic
energy density of the MT lattice. For a usual isotropic
Euler beam the material deformations ¢ are related to the
centerline curvature vector ¥ via ¢ = —K -7 with 7 the
radial material vector in the cross-section. For a
polymorphic MT, modeled as a continuum material made
of N PFs (N = 11-16), its actual deformation will depend
on the polymorphism-induced prestrain ¢, In this case the
elastic energy density of the MT can be written as

R, 2n
eel / /

where the integration in e, goes over the annular MT
cross-section with R; =~ 7.5nm and R, ~ 11.5nm being
the inner and outer MT radii, respectively. The prestrain
&pol 1s a function of the polymorphic state of the tubulin
dimers. Its definition requires a decomposition of the
tubulin dimer into an inner part (facing the tube axis) and
an outer part (facing outwards from the tube axis) (cf.
Fig. 5). We assume that each curved dimer state generates
a positive prestrain +¢pg on its inner part and an equal but
negative prestrain —epgp on its outer part. We can then
write poi(s, 7, 0) = epr0u(5) [Tig, R —doe/2 () = IR, —doe /28] ()]
Tz qos 2(n41) t+q0s (@), where [py(x) = 1 if x €[] and O

bpo] rdrdoc, (3)

otherwise (Heaviside function) and dpg is the PF diameter.
The parameter g, appearing in the angular part of ¢, is the
natural lattice twist that leads to the proper geometric
rotation of a PF around the tube axis. This parameter is
lattice type dependent and takes discrete values 2n/
qo = +3.4 pm, +25 pm, and —6 pm for MTs with
N =12, 13, and 14 PFs, respectively (Wade et al. 1990;
Chretien 1991, 2000; Ray et al. 1993). We can estimate the
prestrain ¢ pr from the experimental value of the single

Fig. 5 Strains and deformations in the polymorphic tube model. Each
tubulin dimer can fluctuate between a straight, ¢ = 0 state and a
curved, ¢ = 1 state with intrinsic curvature xpg. The curved tubulin
dimer generates a positive prestrain +é&pg on its inner part and an
equal but negative prestrain —epg on its outer part with strains related
to observed dimer curvature via eépr = (R, — Ri)Kkpr/2
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Fig. 6 Phase diagram of the
polymorphic microtubule model
as a function of the

polymorphic—elastic interaction

parameter y from Eq. 7.
Depending on the magnitude
and sign of y the microtubule
can be in an “all PF switched

o
[ =
=

state” (black), “no PF switched
state” (grey), or mixed curved—
helical state. Only the latter
“mixed state” will display net
curvature and lead to an
observable helical appearance

T
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switched PF’s curvature kpp ~ (250nm)~', measured by
Elie-Caille et al. (2007) on single taxol-stabilized PFs, to be
epp = dppipr/2 =~ 1072 Collecting all energy contributions
together the total (elastic + polymorphic) energy of the MT
is then given by

L
EMT = /(eel + erans + einter)ds~ (4)
0

The ground state within this model is determined by the
interplay of the first two terms e, and ey,,s. The last term
einter determines the cooperativity and is responsible for the
suppression of defects in the ideal polymorphic order (cf.
Fig. 7). A large value of the cooperativity constant with
J > kgTL/b would imply a defect-free lattice. However,
the presence of the latter defects (and their motion) is a
necessary ingredient for the overall rearrangement of the
helix, as discussed below.

To understand the basic behavior of the ideal helical
ground state without defects, i.e., where PFs are individu-
ally in a uniform state (either curved or straight), we ini-
tially restrict ourselves to the simplified energy density
€ = €] + euans- 10 investigate the MT geometry we first
introduce two reference frames (Fig. 2b). One is the
material frame with base vectors (i, i, ii3) attached to the
MT cross-section. The other is an external fixed laboratory
frame with base vectors (ily, iiy, ii;). Putting the MT along
the i, axis direction and considering small MT angular
deflections we have i, = ii3. In this case the two frames are

|

R f—
& .
+

~

‘_‘: Double Junction
: Defect

Ideal Polymorphic

Order Single Defect

“Random Walk"
of Double Defects

Fig. 7 Defects in ideal polymorphic order soften the helical states
and give rise to “polymorphic dynamics.” Single defects carry a cost
proportional to their length, whereas double defects make only a local
energy contribution. The coexistence of left- and right-handed defects
(LH and RH) along the length leads to a “random walk” of the
polymorphic curvature direction and in turn to an effective torsional
deformation

simply related to each other by a rotation transformation
R(s) given by the internal MT lattice twist go, such that
(ﬁm ﬁy) = R(S)(L_il, ﬁz) with

R = ((Godos ~ e, 5)

singps  COS oS

To rewrite e in a more illuminating fashion, we define two
important order parameters at each MT cross-section. The
first is the vectorial polymorphic order parameter
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N
- 2 2
B(s) = 5 <ﬁ1 cos _;\rln + i sin _]7\r]n> au(s).

n=1

Physically, P, a 2D vector at each local material frame
section attached to the MT (cf. Fig. 2b), describes the
asymmetry of distribution (a kind of “polarization”) of the
dimer states. It acquires a nonzero value only in the case
when the curved and noncurved states are azimuthally
separated on opposite MT sides; for instance, the “all-
straight” or “all-curved” PF state both correspond to the
same value P = 0. Besides the vector f’, we need to define
a second (scalar) quantity

M(s) = Z an(s),

which counts the total number of dimers in the curved state
at cross-section s (or in the Ising model terminology, the
“magnetization”). After integration of Eq. 3 over the
cross-section and some algebra, the energy density
€ = €q] + eqans Can be written in the more appealing form

e=— [(fc’ — %pol)z—i—x% (%yM — sinz(n/N)ﬁz)} (6)

with the elastic bending modulus B = X (R} — RY), with

2
K1 = ;f;;f};l) kpp and a dimensionless parameter
K 2NAG
gy — PE - (7)
K1 bBx 1

For small deviations of the tube axis from the i, direction,
the polymorphic curvature vector ¥n, in the external

coordinate frame (i, i) is related to P (in the internal
frame (i, 1)) via the transformation in Eq. 5 as

Rpol = CR(s)P (8)

with ¢ = sin(n/N)xk, a geometric proportionality constant.
Phase diagram

In the absence of defects, the energy expression (Eq. 6)
allows one to determine the conformational ground state of
a polymorphic MT. To this end, we first resort to one
further small simplification and make the “single block
ansatz”; i.e., at each cross-section we assume only a single
continuous block of p switched PFs. This ansatz was pre-
viously used by Calladine and has been proven very useful
in modeling bacterial flagellin polymorphic states (Asakur
1970; Calladin 1975). In the ground-state configuration the
curvature is given by K = Kpoi(p), whose absolute value
obtained from Eq. 8 is kpoi(p) = ki sin(mp/N). The opti-
mal switched block size p = p  can be determined by

@ Springer

minimizing the second term in Eq. 6, which within this
ansatz becomes
2

=5 (rgr s (r)) ©)
This gives rise to an interesting MT phase behavior (cf.
Fig. 6). The latter only depends on the polymorphic—elastic
competition parameter y from Eq. 7, which measures the
ratio between the polymorphic energy of tubulin switching
and the purely elastic cost of this transition.

For y < —1 the chemical switching potential AG
strongly dominates the elastic energy cost bBx7. Therefore,
switching is highly favorable and all the PFs will be found
in the ¢ = 1 state. This gives rise to a straight but highly
prestrained configuration.

Analogously for y > 1, the bending energy contribution
is too costly for PFs to switch at all. Therefore, in this
regime the PFs are all in the straight state with ¢ = 0 and
the MT is consequently straight as well.

For —1 < 7 < 1 the situation is more interesting. In this
interval we have a coexistence of two locally (meta) stable
MT conformations: the straight tube (prestressed or not,
depending on the sign of y) and a curved lattice state with
p" switched protofilaments. For —j <y <7 with 7 ~ 0.72,
the curved lattice state is the absolute energy minimum and
the straight state is only metastable. Therefore, in this
regime and in the absence of twist (go = 0), the ground-
state configuration of the whole tube would be a simple
circular arc section (cf. Fig. 2b). On the other hand, the
ground state of a microtubule bearing natural lattice twist
qo # 0 will be helical (cf. Fig. 4).

It is easy to see that a stable helical state as observed by
Venier et al. (1994) is only possible for a switching ratio
p*/N € [1/4,3/4]. This together with wpp = 1/250 nm
(from Elie-Caille et al. 2007) and #cpoi (p*) = 51 |sin(np*/N)|
provides us with a direct estimate of the radius of curvature
K;oll ~9 — 14um. Very strikingly, this range closely
reproduces the observed MT helical curvatures as estimated
from Venier et al.’s work (1994) kL -~ 11 um, lending
strong support to the model. Furthermore, taking the helical
state stability as an empirical fact (implying that |y| <0.72)
and assuming a typical protein Young’s modulus of Y =~
1 — 10GPa enables a simple estimate of the transition
energy per monomer as AG ~ +1.1 to +11kT, a reasonable
range for a soft biological object.

In general, the full energy expression, including the
cooperativity energy term (Eq. 4), gives rise to a very
complex behavior. Here we will focus on some basic new
phenomena. It turns out that the most remarkable deviation
from standard wormlike chain (WLC) behavior arises from
the fluctuation dynamics of the polymorphic order param-
eter’s angular phase, which we consider in the following.
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Polymorphic phase fluctuations

Here we introduce a sightly different phenomenological
model that simplifies the study of Eq. 4 while still
reflecting important aspects and physical properties of it. In
this section we assume as before that the helical state is the
ground state and consider now the effect of the fluctuations
around it. To this end we decompose the polymorphic order
parameter as

P (s) = P(s)[cos(¢(s))dis + sin((s))it2],

with P(s) being the “polymorphic amplitude” and ¢(s) the
“polymorphic phase variable.” The latter determines the
orientation of the switched block tubulin dimers at each
cross-section with respect to the MT material frame. From
Eq. 8, the centerline curvature with respect to a fixed
external (ﬁx, ﬁy) frame is then

71301(3) =Ko [COS(CIOS + ¢(s))iix + sin(qos + ‘f)(s))ﬁy}v
(10)

with ko = cP(s).

In general, both the polymorphic phase ¢ and amplitude
P can fluctuate along the MT contour and contribute to the
polymorphic energy. The phase fluctuations are induced by
creation and motion of polymorphic “double defects” (cf.
Fig. 7). The double defect, a kind of “polymorphic dislo-
cation” that can be either left or right handed, maintains the
number of switched protofilaments constant while reori-
enting the direction of curvature. At zero temperature the
lattice would be defect free, ¢» would be constant, and the

polymorphic order parameter P would strictly follow
the lattice twist. The phase change ¢’ = d¢/ds will deviate
from zero if on relevant length scales there are enough
polymorphic double defects to allow for reorientation of
the polymorphic order parameter away from optimum. The
double defects carry only a limited local energy cost AE =
2J per defect and can be easily thermally excited if J<kgT.
In the approximation of a large number of PFs, assuming
that ¢ can change continuously, we can write the phase
contribution to the energy as

Epa(#) =5 [ a5, (i

with the polymorphic phase stiffness
(2 + e¥/%T), which can be related to the density of double
defects with energy 2J (cf. Fig. 7 and Appendix A), giving
rise to a new length scale: the polymorphic phase coher-
ence length [, = Cy/kgT. For MTs shorter than [, we will
observe coherent helices, while on longer length scales the

helix softens significantly and eventually loses its helical
appearance.

In contrast to the just discussed polymorphic disloca-
tions which can be easily thermally excited, the variation of
the polymorphic amplitude P, i.e., change of the number of
switched PFs, is more energetically costly. Any deviation
of P from its optimum state P~ (given by the phase dia-
gram) is associated with an energy cost E o (|P| — [P*]))* -
[ proportional to the length [ of the region in the unfavor-
able state (cf. Fig. 7; see Appendix B). Therefore we
conclude that, on large enough scales, the polymorphic
phase fluctuations will be the dominant effect. Based on
this and on the observation of stable helical states (Venier
et al. 1994) we will in the following assume P = const.

For small deflections around the z axis, the unit vector
tangent to the MT’s centerline is approximately given by
T ~ (0,,0,,1) in the laboratory frame (idy, iy, ii-), where
0 = (Ox,Oy) are the centerline deflection angles in x/y

direction. The global centerline curvature ¥ = a7z /ds can
(0;, 0, 0) , and the total MT
energy can be written as follows:

Etot - Epol((;b) + Eel(ev ¢) (12)

The first energy term is the polymorphic phase contribution
(Eq. 11). The second term is the elastic bending energy

L

B

5/ 0 - 5. (13)
0

From Eqgs. 11-13, we see that the zero-temperature ground

then be approximated as ¥ ~

e10¢

state corresponds to ¢ = const. and ? = ?pol, that is, to a
defect-free helix with a pitch given by the natural lattice
twist go. At finite temperature, both elastic and polymorphic
fluctuations will be excited so that the curvature can be
— — —
decomposed as 0 = ?pol + 0y with ¢, the purely
elastic contribution. This gives rise to a helical MT shape
described by the curvature ?pol + ?el and torsion 7~ ¢’ +
qo- The MT lateral displacements away from the Z axis can
be written as p'(s) = (x(s =[5 (0x( ,(s)))ds’,
which for small deﬂectlons decouples 1nt0 elast1c and
polymorphic displacements p’(s) = 71301 + Py, where
Do~ fo a(s')ds’ and 'y ~ fo poi(s')ds’. The latter
can also be written from Eq. 10 as

Frals) =10 [ a5 [ d5(eos(ans + ()7
0 0

+sin(qof + () 7). (14)
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In Fig. 8, snapshots of configurations of clamped MT
obtained from Monte Carlo simulations are plotted for
different concentrations of double defects (i.e., different
values of /4) with twist and no twist. It is interesting to
remark at this point that, based on the symmetry in the
problem, any MT configuration can be rotated around the
z axis with no energy cost. This seemingly trivial feature—
the energetic degeneracy—is in fact the most distinctive
and unusual property of a polymorphic chain. We consider
the consequences in the following.

_

No Defects (Twisted)

——~—

No Defects (No Twist) With Defects (No Twist)

With Defects (Twisted)

Fig. 8 Conical “wobbling” motion due to the rotational energy
degeneracy of the polymorphic MT model: snapshots of Monte Carlo
simulated lattice states. a Twisted MTs free of defects L/l < 1 and
with numerous defects L/l > 1. For larger number of defects, the
helix looses its coherent appearance. b For nontwisted MTs the

movement has a typical parabolic “trumpet-like” shape
n
-_IQ. L
ﬁ., b L()
5]
-
8 (i
=
5]
k7 U]
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a )
o
=
8
i
0
0
Length L

Fig. 9 A typical shape of the effective persistence length [J (L) for a
clamped microtubule as obtained from Egs. 16, 18, and 20. Most
generically, the curve displays three different regimes: (I) an initial
rapidly decreasing regime where polymorphic effects become more
effective with growing L (softening the chain), (II) a linearly growing
oscillatory regime corresponding to the coherent wobbling movement
of the clamped microtubule, and (III) an asymptotic plateau regime
where the helix progressively loses its coherence with growing L. In
this regime, the behavior tends to that of a classical semiflexible chain
yet with a renormalized effective persistence length given by Eq. 23

@ Springer

The wobbling mode

By construction, a polymorphic chain as we describe it
here has a N-fold symmetry. Therefore, there are N dif-
ferent helical states of different orientations with the same
energy, i.e., N ground states. This energy degeneracy is
also reflected in the continuum model (where the N-fold
symmetry is approximated as continuous) by the rotational
invariance of Ep,(¢) (which depends only on ¢'). The
broken cylindrical to helical symmetry of the straight state
is then restored by the presence of a “Goldstone mode”
¢ — ¢ + ¢, consisting of a rotation of P by an arbitrary
angle ¢q in the material frame (cf. Figs. 2, 3). This mode
comes energetically for free and leads to dramatic effects
on the chain’s fluctuations; for instance, for a MT clamped
at one end, this symmetry implies that the MT will ran-
domly rotate much like a rigid rotor, as shown in Fig. 4.
Note however that this rotation will still be associated with
a certain dissipation, as the system has to go over energy
barriers between two helical states. This barrier due to the
flipping of lattice states can be overcome at nonzero tem-
peratures by the creation of double defects which diffu-
sively propagate along the MT and eventually angularly
reorient the polymorphic order parameter P. These
dynamic phenomena and the dissipation mechanisms will
be discussed in a later section.

In summary, the zero-energy mode that we also call the
“wobbling mode” is an inherent feature of a helically
polymorphic filament and, as we will now see, could be the
culprit causing anomalous fluctuations of clamped MTs.

Persistence length anomalies

Among several definitions of the persistence length, we
consider here—for direct comparison with clamped MTs
experiments (Pampaloni et al. 2006; Taute et al. 2008)—
the “lateral fluctuation persistence length” defined as

Ih(s) = (2/3)5°/V(s), (15)

where V(s) = <p(s)2> — (p(s))? is the variance of p? =
x? 4+ ¥, the transverse displacement at position s, and () is
the ensemble average. As in experiments (Pampaloni et al.
2006; Taute et al. 2008), we assume a rigid clamping point
at position s = 0, preventing the microtubule from trans-
lating and rotating at that point.

For an ideal semiflexible wormlike chain we expect that
the persistence length l; = [g is a position-independent and
definition-invariant quantity equal to the bending persis-
tence length Iy = B/kgT. (For another more classical def-
inition of the persistence length, coming from the tangent
tangent correlation function, see also Appendix C). How-
ever for a polymorphic chain, the strict equivalence of l;
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and Ig is not correct. To see this, we can decompose the
polymorphic and elastic fluctuations p'(s) = P po + Par-
Inserting this into Eq. 15 and taking into account that, for
small deflections, the two components decouple
(P poi 1) = 0 leads us to the following relation for the
persistence length:

1) !
b= (o +15") (16)
with the polymorphic persistence length given by [y, =
2
(2/3)s% / Vol and Vioi = (pp®) — (Ppor) - The average (-)
is now performed over the phase ¢ governed by the energy
Eq. 11. More precisely, the average of any arbitrary
functional A[¢] of the polymorphic phase can be
performed by first selecting one of the equivalent ground
states characterized by ¢(0) = ¢ and then performing the

average over the polymorphic angle distribution (Eq. 11)
around the chosen ground state, i.e.,

Wby, = [ DoA[d+ o] exo (2 [ ai?),
1)

<E>—¢> $o $(0)=0) and Z=
[Dgexp(—% [ ds¢™) is the partition function. In a
second step, for a freely rotating polymorphic phase, we

integrate over the rotational zero mode ¢, : (A[¢]) =

1
2n

account the phase fluctuations over (and around) all

where (and thus

(A[#])|4,d¢po. This operation correctly takes into

equivalent ground states related by the transform ¢ —
b+ ¢o- The rotational symmetry around the z axis
(integration over ¢) readily implies(p,q(s)) =0 and
<xl2ml> = <y§01>. Therefore, the polymorphic persistence

length can be written as

b (s) = (1/3)5*/ (2 (s) ) (18)
with
ypol /d¢0//<0’pol (51) 0y pol S2)>\¢ dsdsy,
(19)

whose computation (for details cf. Appendix C) leads to
the following mean-square displacement:

2i21 -t
<ypo](s)2> = 3(+4(;IZO)4 {P] (s) —e " Py(s) cos(qos)
-e‘ﬁ?fg(s)sin(qos)}, (20)

where P;(s) are polynomial functions given in Appendix C.

A typical curve of l; versus s is provided in Fig. 9. In
general, it shows three different characteristic regimes,
denoted I, II, and III in the figure:

(D At short distances to the attachment point § <Spi, ~
7/qo (half the polymorphic wavelength) the total
persistence length can be approximately given by

272
I~ — 3K%ZBS (21)
In the limit of very short distances s < I5 kg 2, the poly-
morphic fluctuations become negligible and are completely
dominated by purely “classical” semiflexible chain fluc-
tuations. Not surprisingly, the persistence length coincides
then with the classical bending persistence length
l;(O) = [g. Starting from [, polymorphic fluctuations
begin to contribute, reducing [,, which attains a global
minimum at Sy, & 7/qo.
(II) For intermediate length values sy, <s <[4, the
total persistence length displays a nonmonotonic,
oscillatory behavior around a nearly linearly growing

average
2 4
I'(s) ~ 3@s+§%mm%g. (22)

This result is worth deeper understanding. A moment of
thought reveals that the oscillatory part with wavelength
27/qy is related to the helicity of the ground state. At the

same time the linear growth l*( ) oc o%s can be associated

with the roughly conical rotation of the clamped chain
(wobbling mode) which acts as an effective “rotational
hinge” at the attachment point (cf. Fig. 4). The sinusoidally
modulated rotation cone which builds an approximate
envelope for the chain’s motion has an opening angle o
which is related to the geometric features of the helix as
o = 2K oqo L
(II)  Finally for very large distances from the attachment
point s > [, we expect to recover classical results
of a semiflexible chain again. Indeed, in this
asymptotic regime the effective persistence length
reaches saturation with a renormalized constant

value [5(c0) = 1/( pol T 15 1) where

1
Loo = 2lyqirg* + E;cgzl(;l. (23)

Intuitively the helix then loses its “coherent nature”—due
to strong variations of ¢’ and elastic fluctuations 0,—and
the collective rigid rotational (“conical”) motion is finally
replaced by an uncorrelated segment movement. Not sur-
prisingly, the persistence length then becomes length
independent again. Curves for different values of [, are
provided in Fig. 10.
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0 ) 60 %
Length [u m]

Fig. 10 Comparison of theoretical persistence lengths for different
values of the polymorphic phase coherence length [, (lg = 25 mm,
Ko = 0.03 pm~', and ¢y = 0.8 pm™"). For ly =00, the MT is a
(defect-free) coherent helix performing the “wobbling motion” (as in
Figs. 4 and 8a, left panel). The plateau regime—where elastic
fluctuations become dominant over polymorphic—is reached for very
long MT only (not seen in the figure). Finite [y reduces the coherent
wobbling motion, shortening region II of Fig. 9, and the plateau
regime is reached earlier with decreasing [,

7000
6000
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[= 4000
=
* _IQ- 3000
2000
*  Pampaloni et al.
L * O
1000 O  Tauteetal.
Polymorphic Tube Model
0 B A A ) ) )
0 10 20 30 40 50 60
L [um]

Fig. 11 Effective persistence length /; as a function of position

from the attachment point along the clamped MT contour: exper-
imental data (stars and circles) (Pampaloni et al. 2006; Taute et al.
2008) and the theoretical prediction with /g = 25 mm, 4 = 7.5 pm,
ko' =18 um, and goly > 1

Untwisted MTs

While there are no completely twist-free MTs and every
lattice will have generically a small twist, one can still
formally study the interesting limiting case gy = 0. Note
that the large estimated pitch of 13-PF MTs is finite and in
the range of =25 pum (Wade et al. 1990; Chretien 1991,
2000; Ray etal. 1993), while often assumed to be
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Fig. 12 The experimental microtubule relaxation times (Taute et al.
2008) and the no-adjustable-parameter theoretical prediction (full
line) as obtained from static data in Fig.1l1 (with /g =25 mm,
J =75 pm, o' = 18 pm, and qoly > 1). The dashed line illus-
trates the long-length approximation (Eq. 33), displaying the charac-
teristic cubic scaling with length

approximately infinite. In such an ideal case the theory still
applies; however, the overall behavior of l;(L) will sub-
stantially change and become much less consistent with the
linear scaling found in experiments. While for goL > 1 the
chain to leading order moves on a linear cone (with fixed
opening angle ), for goL < 1 but still L < Iy the “wob-
bling” motion occurs on a quadratic cone (a “trumpet-
shaped” cone, cf. Fig. 8b). More precisely, for the excep-
tional case of untwisted MTs, the polymorphic part of

the lateral fluctuations (Eq. 20) behaves as <yp01(s)2> =
2/3131y (Pr = e ToPs) with Py(s) =248 — 318’ + 57,
Py(s) = 241% + 1203s. Therefore, for short MTs L < Iy,
the lateral fluctuations grow with the fourth power of the

length <)’pol (L)2> ~ K3L*/8, whereas for long ones L >>

l4, the deviation grows cubically, <yp01(L)2> = 2/3131,L3.
From this, the persistence length consequently has two
typical regimes. For L < [, we deduce from Egs. 16 and
18 that [;(L) ~ (I + 3/8K(2)L)_1. This expression implies
that long, untwisted MTs appear increasingly softer with
growing length, and the effective persistence length decays
inversely /5 oc 1/L for L>>1/ (3/8k3ls) and reaches a
limiting value [; = lB/(l + ZIBZ¢K%) for L > ly. Fora MT
of L~10—20um we would expect [;~10 —20pum, a

value two orders of magnitude smaller than observed by
Pampaloni et al. (2006) and Taute et al. (2008). This
decreasing behavior is in contrast with observations of
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[, o< L, leading us to the conclusion that the zero-twist MTs
do not constitute a significant portion of the experimental
data (Pampaloni et al. 2006; Taute et al. 2008) and that
twist is necessarily required for growth of l; with L.
Having developed some static consequences of the
polymorphic MT we now turn to its dynamical aspects.

Polymorphic phase dynamics

To describe the MT fluctuation dynamics we consider the
total dissipation functional Pgiss = Pext + Pin, Which is

composed of an internal dissipation P, = % S [ (Z)zds (with

¢ = d¢p/dr) coming from the flipping of lattice states and an

external hydrodynamic dissipation Pey; = %f o pzds asso-
ciated with the time variation of the MT deflection p'(s, ) =
(x(s,1),¥(s,1)). We assume that the friction constant (per
unit length) £, of the helical MT is approximately the fric-
tion constant & | = 4nn/(In(2L/R) — 1/2) of a long slender
body of length L of (small) radius R < L moving in a fluid
with viscosity # at low Reynolds numbers. The time evolu-
tion equations of the phase variable ¢(s, f) and the lateral
displacement y(s, ¢) [and x(s, #)] are given by the coupled
Langevin equations

5Et0t _ 5Pdiss

= 4T 24
50 5 ¢ (24)
and
5Eo OP iss
tot di +Fp (25)

dy oy
with I’y /p the thermal noise terms. In general, the lateral
displacement y(s, f) has contributions from both

polymorphic  ypoi(s,7) & Kq [, ds’ fg/ sin(¢ (3, ¢) + qos)ds
and elastic fluctuations ye (s, ) & [; Ou(s',1)ds’ and the
dynamics is highly nonlinear. In the regime L > [, where
the helix loses its coherence, one expects to retrieve the
dynamics of the usual semiflexible filament with 7~ L*.
However, in the opposite and physically more interesting
regime L < l4, a new and different dynamic behavior can
be expected. As we learnt from the study of the static case
the effects of polymorphism become more pronounced at
shorter lengths. As we have seen in this regime, the
dominant motion is the wobbling rotation of a coherent
helix on a cone where elastic fluctuations become
negligible compared with polymorphic ones, i.e., y(s,t) ~
Ypoi(s,1). In this regime few polymorphic defects with
L < I, are present and the phase can be approximated as
O(s,1) = ¢po(t) + 0¢(s, 7). Using this decomposition with
0¢(s,t) < 1 we can expand P,y to leading order as

1 . .
Pdiss ~ EL(éint + éexl)qbg + 0(5d)2> (26)
with an external friction constant ., given by

e 2 : 272
¢ 1K} sinLgy qL
= 2(1 + Lgy) — 4 +—. 27
éext qg ( ( Cos QO) qu 3 ) ( )

The evolution of the zero mode ¢y() reduces from the

Langevin equation (Eq. 24) to 0= —%—i— I'y, which
0

leads to the equation of motion

L

d 1
L' [ Ty(s,t)ds (28)
/

a%(’) = g

with a friction constant & = &y + Coxi. Therefore,
¢o(r) satisfies the simple Langevin equation (Eq. 28)
corresponding to a simple potential-free Brownian motion
with mean-square displacement given by (see Appendix D
for a more detailed explanation)

<(¢0(I) - ¢0(0))2> - ZkaBt: .

(29)

In this limit (wobbling mode dominant), we have a roughly
rigid helix moving randomly along a cone and all the
physics is contained in the effective friction coefficient
Erot(Eint Ko» qo, L) and its dependence on the internal dis-
sipation &, the helix parameters ko, go, and the length L.

For later comparison with experiments we compute the
longest relaxation time t given by the autocorrelation
function (ypoi(s, 0)ypoi(s, 7)) o< e """, Using Eq. 29, a short
computation (Appendix D) leads to

(pat(Ls 0)ypar (L, 1)) = (2 (L) ye ™/ (30)

2/, -~ " .
with <y12)01(L)> = ;—g (% +1 “;%(q"L) - LS"L((?UL)) as the static

mean-square displacement (Eq. 20) in the limit L < [, and
with 7(L) = L¢/kgT as the longest relaxation time,
proportional to the total friction constant . For very short
lengths L < [, = (3éimfil)”2q01<5 ! when the hydrodynamic
dissipation is entirely dominated by internal dissipation, we
have a linear scaling

t(L) =~ L&y [k T. (31)

For larger L > [, the wobbling movement through the fluid
is the dominant source of dissipation and

T(L) ~ Liext(L)/kBT (32)

with . (L) given by Eq. 27. Note that the L dependence of
Eext relies also on the L dependence of &, (L), which for
simplicity has been modeled as the friction of an ideal
slender tube moving in a liquid. A more precise (but
difficult) determination of &, could slightly change its
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variation with L, although not the general trends of . (L).
In particular, if we assume that &, is L independent and
that Lgo > 1, we have in this regime the scaling

<L 2,3
L) ~—— L. 33
(L)~ 5 (ko 40) (33)
So in summary for T we expect a crossover from a linear,
internal-dissipation-dominated L dependence at short
lengths to a cubic length dependence given by hydrody-
namic friction alone.

Comparison with clamped MT experiments

Comparison with experiments (Pampaloni et al. 2006;
Taute et al. 2008) which measured lateral fluctuations of
clamped MTs reveals several interesting characteristics
that are in agreement with predictions (cf. Fig. 11). First,
the predicted mean linear growth of l;(L) agrees with
experiments, as a single exponent fit l:; ~ L° of the data
yields 6 = 1.05. Besides the linear growth, the experi-
mental data reveal a large spread of l;; data points which
seems to grow approximately in proportion to the length.
This linearly growing experimental spread is likely linked
to the intrinsic spread of g values of different MT lattice
populations (Wade et al. 1990; Chretien 1991, 2000; Ray
et al. 1993). MTs with different number of protofilaments
will display different lattice twists ranging from gy =~ 27/
3 pm (for 12-PF MTs) to g0 <S27/25 pm (for 13-PF MTs).
Keeping in mind the scaling l;(s) o< qgs (cf. Eq. 22), we
would expect more than an order of magnitude variation of
measured l; values while the slope l;(s)/s should display a
constant spread.

Second, the data of Taute et al. (2008) (Fig. 11, circles)
indicate a nonmonotonic dependence with systematic
trends over several consecutive data points. This seems to
be phenomenologically well captured by the oscillatory
behavior of IZ(L) in Eq. 22. On the other hand, the data of
Pampaloni et al. (2006) are definitely much more spread
and do not allow such a clear conclusion. Therefore, the
nonmonotonicity of l:,(L) is at present experimentally dif-
ficult to confirm from the two existing experimental data-
sets taken together, although it is consistent with the data
within the error bars. As mentioned, the presence of dif-
ferent lattice populations (even within single MTs) could
give rise to a large spread of experimental data points and
an effective “washing out” of the nonmonotonic behavior
for different lattices within the same statistics.

Remarkably, the experimental data reveal that the large-
length plateau s > [, where l:, would become length
independent is not reached even for the longest MTs
(~50 pm). This is in phenomenological agreement with
the theory, as based on the long coherent helices observed
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by Venier et al (1994) it would imply a very long /4. The
absence of the plateau in Pampaloni and Taute’s data
allows a lower estimate of the coherence length:
Iy > 55 um, which in turn would imply a large coupling
constant J > 4kgT. The best comparison between theory
and experiments (cf. Fig. 11) gives /g = 25 mm, corre-
sponding to a rather high Young’s modulus Y ~ 9 GPa
higher than typically reported before (Gittes et al. 1993;
Venier et al. 1994; Mickey and Howard 1995; Felgner
et al. 1996; Kikumoto et al. 2006; Kurachi et al. 1995;
Takasone et al. 2002; Brangwynne et al. 2007; Janson
2004). However, the present value is well within the range
for proteins and protein tubes, with ¥ up to 19 GPa being
reported in literature (Kol et al. 2005). The higher value of
the bare Young’s modulus extracted form the present the-
ory should also not be a surprise, as in previous models all
MT conformational fluctuations were interpreted as origi-
nating from bending deformations alone. In our model,
both elastic and polymorphic fluctuations contribute, with
the latter being much softer and giving therefore dominant
contribution.

The best-fitting helix wavelength 4 ~ 7.5 um is close to
the expected 6 pum corresponding to the twist (Wade et al.
1990; Chretien 1991, 2000; Ray et al. 1993) of the 14-PF
MT population. This is in agreement with the fact that,
in contrast to the in vivo situation, the large-pitch
(A ~ 25 um) 13-PF MTs are likely underrepresented in the
data (Pampaloni et al. 2006; Taute et al. 2008). Indeed,
in vitro studies of taxol-copolymerized MTs display a MT
population consisting of a majority of 14 PFs (61%) while
13 PFs (32%) are less represented (Wade et al. 1990;
Chretien 1991, 2000; Ray et al. 1993). The in vitro con-
ditions therefore strongly shift the PF population away
from the preferred low-twist 13-PF MT towards the highly
twisted 14-PF MT.

The estimated Iz is larger than in previous studies
(Ig & 1-6 mm), where however polymorphic fluctuations
were neglected. This result leads us to the conclusion that,
if polymorphism is partially suppressed, one would mea-
sure much larger effective [, as is in fact observed; for
example, in studies where 2D slab geometry is used (MTs
between two close glass slides), effective suppression of
the three-dimensional polymorphic helices or reduction of
their mobility is expected. A typical observation in such
cases is an extensive “intrinsic curvature” (of previously
unknown origin). Within our theory one could interpret this
curvature as pinned/quenched polymorphic helices pre-
vented from fluctuating freely by the confinement. These
effects could in general explain the dramatic variations of
measured [, values based on the presence/absence of
polymorphic “softening” in different experimental setups
and geometries.
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Now, let us consider the clamped MT dynamics as
investigated by Taute et al. (2008). Careful analysis of
Taute et al.’s data reveals a peculiar scaling of the longest
relaxation time with the length. Indeed, an independent
single exponent fit of Taute et al.’s data (2008) gives
7 o< L* with o = 2.9 in the experimental range considered
(2.2 ym < L < 28 pm). This peculiar scaling can be
understood as originating from hydrodynamic relaxation of
a “wobbling” polymorphic chain. Using only the previ-
ously best-fitting parameters of the static data (Fig. 11)
(Ko/qo)zf\’\i 4.8 x 107 and = 1072 Pas (viscosity of
water), we find a remarkable correspondence between the
theoretical prediction (Eq. 32), i.e., (L) & L. (L) /kgT
and the data of Taute et al. (2008), as shown in Fig. 12.
This zero-parameter prediction matches well the data for
larger lengths. For scaling comparison, it is interesting to
compare the data with the approximate theoretical relaxa-

tion time (Eq. 33), i.e., t(L) ~ 3?:;T (10 /qo)2L3 (expression
strictly valid for L > 0.8 pm), which has a scaling law in
agreement with the single exponent fit of the data. Con-
sidering that £, ~ 1.6y — 2.37 is roughly length indepen-
dent in the experimental L range, one can assume ¢, ~ 2
to obtain the prefactor as t[h/L3 =79 x 10" s/m>.
Keeping in mind the simplicity of the interpretation (and
the lack of free parameters therein), this compares very
favorably with the best fit to the experimental data slope
ta/L> = 6. 25 x 10" s/m® (cf. Fig. 12). Note that the
approximate value of ty seems to correspond slightly
better to the data, but this is likely of no physical signifi-
cance at this level of approximation. Indeed, the neglected
elastic modes other than the wobbling as well as the
approximation of the hydrodynamic friction should change
the details of the L dependence of ¢ and thus of 7y, (but
not the general trends). Without more precise computation
of the dynamics we can be satisfied with the rather aston-
ishing agreement between theory and experiment for long
MTs. This leads us again to the conclusion that, in these
experiments, long MTs behave as almost rigid helical
polymorphic rotors whose motion is dominated by the
zero-energy “wobbling” mode and its hydrodynamic
dissipation.'

For very short MTs we should expect deviation from
this simple interpretation. In this regime the linearly scal-
ing internal dissipation, coming from the migration of
polymorphic defects, should start to dominate over pure
hydrodynamic friction, and for sufficiently short MT
lengths L — O we could measure &, from the limit value
of ty/L. It appears that, for the presently available data
with L > 2 pm (Taute et al. 2008), this plateau regime is

"' In Appendix E we discuss possible effects induced by surface
attachment that could to some extent interfere with the ideal free
“wobbling” motion in experiments.

not yet fully developed, enabling us to provide only an
upper numerical estimate for the inner dissipation
EineS4 x 10717 Ns.

Very short MTs

Comparison with experiments for even shorter chains
(L < m/ge) is more difficult due to the lack of data in
clamped MT experiments (L > 2 um). We can nevertheless
try a comparison with the results by the Dekker group for
the kinesin motor gliding assay of short MTs (Vanden
Heuvel et al. 2007, 2008). Besides some similarities with
the clamped fluctuating MTs, there are a number of dif-
ferences between the modeled situation of free 3D MTs and
the 2D gliding assay. In particular, the 2D geometry will
strongly perturb the preferentially three-dimensional helical
ground state. The active contribution of strong motor forces
to the trajectory of short MTs is an additional potential
perturbation. Effects of MT buckling and axial MT rotation
by kinesins likely become important. This said and ignoring
the differences, we can still compare (in order of magni-
tude) our and the Dekker group’s results (Vanden Heuvel
et al. 2007, 2008). For micron-sized MTs we obtain
I, ~ 0.8 um, in approximate agreement with the ~0.2 um
value obtained by Vanden Heuvel et al. (2007). One should
mention that the two cited studies (Vanden Heuvel et al.
2007, 2008) give strongly different results depending on
whether free gliding or gliding assay with additional electric
field is considered. This difference results from the larger
deformations induced by the electric field. Therefore, the
comparison of our theory with the passive gliding assay
appears more appropriate and gives closer agreement.

Summary

We have suggested a new model that connects some of the
most persistent and confusing experimental findings con-
cerning microtubules. Starting from a rather broad spec-
trum of (apparently) disconnected observations, we
progressively built the case for a new hypothesis: the
existence of internal switching of the GDP—tubulin dimer
within the microtubule lattice. Why do microtubules
become helically wavy? Why do they switch to perma-
nently bent circular states? Why do they fluctuate anoma-
lously when clamped? These three dangling questions
became the central pillars for the present model. Surpris-
ingly, the simple assumption of a bistable GDP—tubulin
seems to explain these otherwise disparate phenomena in a
unified manner. As we know from recent experiments, the
bistability hypothesis of taxol-stabilized protofilaments is
indeed empirical fact (Elie-Caille et al. 2007). We have
shown here that the incorporation of such a bistable tubulin
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into a closed elastic lattice changes its free behavior,
introducing strong conformational competition among the
tubulin dimers. Tubulin units on opposite sides of the tube
now start to compete for which is going to switch to the
curved state. The lattice-induced frustration does not allow
all the tubulin dimers to minimize their energy individually
and to switch to their preferred states at the same time. The
symmetry breaking induced by this frustration mechanism
leads to a global microtubule lattice curving. Remarkably,
the curving direction is chosen randomly, and this has
profound consequences. The microtubule can chose
between many energetic ground states (as many states as
protofilaments in the lattice). When we graft one end of the
microtubule onto a substrate while still allowing it to chose
its bending direction freely, the strange energy degeneracy
generates a very unusual thermal motion. In this case the
microtubule’s motion follows, roughly speaking, a cone
and it rotates or “wobbles” at no energy cost around its
attachment tangent. This mode of motion, which is not to
be confused with material frame rotation (which is strictly
prohibited by grafting), is probably among the most strik-
ing outcomes of the two-state GDP—tubulin model. It is
exactly this behavior that allows consistent explanation of
the measurements of unusual lateral fluctuations of grafted
microtubules (Pampaloni et al. 2006; Taute et al. 2008).

Perspectives

We focus herein on modeling taxol-stabilized microtu-
bules, and the question naturally arises if the proposed
model affects “real” in vivo microtubules. On the one
hand the “weakly curved” state that is involved in the soft
polymorphic dynamics as described here seems to be (so
far) a specific signature of taxol-stabilized GDP-tubulin
state. On the other hand, we have argued that the naturally
occurring “high-curvature” GDP-tubulin state could
coexist with the straight state in the lattice under in vivo
conditions where MTs are stabilized with MAPs. The
involvement of this high-curvature state switching seems to
manifest itself in motor-driven straight to wavy transitions
of MTs in many living cell systems (Bicek et al. 2009;
Brangwynne et al. 2006, 2007; Keating et al. 1997; Kaech
et al. 1996; Samsonov et al. 2004). A particularly impres-
sive instance of such a polymorphic switching event
in vivo could be found in the process of axonal retraction,
where the whole MT cytoskeleton of the axon undergoes a
straight to helical transition and in turn retracts towards the
soma (Fridoon et al. 2000). To understand these dramatic
transitions in vivo, the present theory has to be advanced
and modified in two ways. First, the effect of large active
motor forces (rather than thermal ones) has to be taken into
account. In particular, one expects that, under strong
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buckling forces, even thermodynamically unfavorable
states can become activated and constitute the ground state
upon large loads.

Second, in virtually all in vivo experiments, MTs are
essentially confined in 2D as the containing cells adsorb to
the glass substrate and assume a vary flat “fried-egg”
configuration. Consequently, the measured properties will
not necessarily reflect the three-dimensional properties of
the molecule. This is particularly important for a MT
transformed to a polymorphic helix state where the con-
finement naturally entails a strong deformation (of the
initially three-dimensional ground state). Under confine-
ment the helical bending and torsional modes become
strongly coupled and bring about new physical effects. In
particular, a torsionally very soft helix will have a tendency
to unwind and form in extreme cases circular arcs, remi-
niscent of the rings observed in gliding assay experiments
(Amos 1991).

Finally, the local action of molecular motors could
trigger a switching to the highly curved state. While for
classical motors such as kinesin 1 direct evidence for such
a mode of action is still lacking, its relative kinesin 13
(Elie-Caille et al. 2007; Desai et al. 1999) has a well-
documented ability to actively trigger radial bending of
protofilaments. Other molecules such as katanin (Hartman
et al. 1998; Davis et al. 2002) have also been suggested to
perturb the lattice and trigger longer-range transitions
(Mohrbach 2007). This opens the intriguing question of
whether classical motors (kinesin 1 and dynein) could
trigger cooperative state transitions and even transmit
conformational signals along the tube. Considering the
present model for stabilized MTs (where high cooperativity
is inherent to the data interpretation), this idea might not be
far fetched. In fact, some evidence towards long-range
cooperativity of kinesin binding along the MT was pre-
sented by Muto et al. (2005), although these results still
await robust reproduction.

This brings us to the question of what experiments
should be performed in order to nail down the polymorphic
mechanism or any other mechanism for MT dynamics.
With microtubules being such delicate, subtle, and possibly
long-range-correlated objects (as suggested here), a general
rule of thumb for experiments should be: Treat them more
gently (do not confine) and observe more carefully (look
for correlated motion). A simple yet important experiment
would be a systematic direct observation of one-side
grafted but otherwise completely unconfined MTs fluores-
cently labeled along their full contour length. As men-
tioned, the presence of a quasi-2D confinement in thin
chambers as used in most MT experiments so far would
perturb the native helical MT state and should therefore be
explicitly avoided. The freely suspended gold-EM nano-
grid attachment geometry as used by Pampaloni et al.
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seems particularly suited for this task. Going beyond
Pampaloni et al., who labeled and traced the MT end only
(via a bead), the microtubules should be visualized along
the full contour in this geometry. Tracing several or all
points along the contour should reveal the predicted sinu-
soidal-helical nature of MT states. The present model
predicts a peculiar cooperatively rearranging helix state
with characteristic telltale curvature correlations between
different lattice positions, which are entirely absent for
usual semiflexible filaments. Directly observing collective
motions such as the suggested “wobbling” mode while
prohibiting trivial spatial rotations that could mask the
effects (by MT grafting) would constitute “smoking-gun”
evidence for a polymorphism-related mechanism.

In conclusion, we have proposed a novel model for
internal MT lattice dynamics. We have shown that it
accounts for the otherwise mysterious MT helicity (Venier
et al. 1994) and the anomalous length-dependent lateral
fluctuation static (Pampaloni et al. 2006; Taute et al. 2008)
and dynamic scaling (Taute et al. 2008). The latter two
phenomena appear as mere consequences of the peculiar
“wobbling motion” of the polymorphic, cooperatively
switching MT lattice. Although most of the observations
discussed here were made in vitro on taxol-stabilized MTs,
we provide arguments in favor of the existence of poly-
morphic MT states in vivo. We speculate that the implied
conformational bistability of tubulin and the allosteric
interaction are more than just nature’s way of modulating
the elastic properties of its most important cytoskeletal
mechano-element. It could also be a missing piece in the
puzzle of polymerization “catastrophes.” Even more
intriguingly, the predicted structural cooperativity could
allow for long-range conformational signaling along single
MTs and turn the latter into an efficient “confotronic” wire
transmitting regulatory signals across the cell.
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Appendix

A. Polymorphic phase coherence length
In this section, we derive the formula [y = 2 (2 + e¥//ksT)
for the polymorphic phase coherence length. To this end
we want to calculate the distribution of double junctions
that leads to angular orientation change A® on a scale /
much larger than the tubulin dimer b, yet still much smaller
than the total length, i.e., b < I < L. In this domain, at
each cross-section we have three possibilities:

1. State j = 0 with no double defect. The rotation angle

A®D is attached to the internal lattice rotation,
A 4y =0
b qo = V.

2. State j = —1 for a left-handed double defect; AD
deviates from the internal twist: 42 — go = — 127,

3. State j = +1 for a right-handed double defect with
AD 1 271
5 —d0= "3

On a length [ we are throwing a three-sided dice //b
times and the total rotation of A® away from the optimal
twist is AD — ggl = 3\,—"22/ bljn The variation of the poly-
morphic phase with respect to the internal twist is then

A(I) /b
Ap=——qo= Zjn

For l/a > 1 the law of large numbers implies that the

12n o .

n1Jn becomes Gaussian

random variable A¢ =
distributed

A2

p(Ad) oce 20

with mean (A¢) =0 and (A¢>) = ('2”) L) (*) (as
(juim) = 0w (j*)). The average (j*) is given from the
Boltzmann factors of the three different states py =

e 2 2\ Qe
1+26—2ﬁ17 SO that <.] > - 1+28—2/fj .

interpret the quantity 1/ (2<A¢)2>) as coming from an
effective elastic energy over the interval [ by writing

%:% BCyI(Ad)>, which allows us to identify the

effective stiffness

1
14+2e-20

and pi = We can now

2
— (2 +e¥P)b.

Cy =kT
¢ 8n2

Note that this expression is valid for large enough J sup-
pressing higher-order defects, i.e., in the limit when mul-
tiple double defects sitting on a single lattice site (i.e.,
| jl > 1) can be ignored.

B. The variation of the polymorphic modulus

In this appendix we compute the energy variation due to a
deviation of the polymorphic modulus |Pl away from its
optimal value | P*| minimizing the energy, i.e., the change
of the number of switched PFs. We start with the energy
density of a MT cross-section

B 2 T
6:5((1(—;%01(17)) (y p — sin (Np )) (34)
whose minimum is reached for p* =% —arcsiny.

Assuming a continuous number of PFs, the energy of a
state with p = p* 4+ Ap switched PFs reads to quadratic
order
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y W B, 2n
e(p" + Ap) = e(p*) — VK cos(N )Ap

.. 1B
=e(p") +FK%\/1 — P20,

where we used cos(n — arcsiny) = —4/1 — y2. Therefore,
the energy variation of a segment of length / reads

n’B 2
AE ~ ki1 —19? fds(p

T pe)

Now using |P(s)| = [sin(Zp)|/sin(n/N) we can write the
energy variation to the same (quadratic) order as

AE =~ Bi? sin®(n/N)y/1 — széds((\P(SN — [P"])).

Therefore, any deviation of P from its optimum state P is
associated with an energy cost proportional to the length /
of the region in the unfavorable state.

C. Persistence length(s)

A definition of the persistence length, often used in sin-
gle-molecule experiments, is expressed in terms of the
lateral deviation p = (x(s),y(s)) of a MT clamped at
s =0 from its attachment axis as [3(s) = (2/3)s’/

<(7(s) - <?(s)>)2>, where (-) is the statistical average.
The equivalence of the x and y directions implies that
% _ 3 2

Li(s) =1/3s /<(y(s) — (y(s))) > The second often used

alternative but more standard definition of the persistence
length—the tangent persistence length—is related to the
angular correlation [,(s —s') = |s —§'|/V(s — ') with

variance V = <(0y(s) —Oy(s ))2> (by symmetry we have
the same expression with 60,). Whereas for an ideal WLC
Iy =l = I is position and definition independent, this is
not the case for a polymorphic chain (see Fig. 13). For
small angular deformations, the decoupling of the chain’s
fluctuations into polymorphic and purely elastic contri-
butions allows one to decompose the persistence length as
;' = Isgi + Ig", this result being valid for both defini-
tions of the persistence length.

We first focus on the first definition, for the clamped
persistence length. In this case the polymorphic persistence
length I3, (s) is given by
. 2 2
b (5) = 1/38/{ (p1(5) = (pr())) ), (35)
where y,0i(s) is the lateral polymorphic displacement in the
y direction. Integrating over the rotational zero mode
readily implies (ypoi(s)) =0 (see Eq. 18). From Eq. 19
one can write
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Fig. 13 Different definitions of the persistence length can deviate from
each other for a polymorphic chain: the “clamped persistence length” [J
(thick line) and the “tangent persistence length” [, (thin line) (for
lg = 10 mm, I, = 50 pm, ko = 0.03 pm~', and go = 0.7 pm™ )

S S

<y1%01(s)> = //G(Sl,sz)dsldsz

00
with the angular correlation function G(sy,s) =
(Oy.pot (51)0ypo1 (s2)) given by the integration over the zero
mode

2n dq’)
G(s1,52) = / z—noGo(Sth, bo) (36)

0

of the angular correlation function at fixed value of
oo, i.e., Go(s1,s2,0) = <9y‘p01(s1)0y,p01(sz)>|¢0. This last
expression, from the relation 0y po(s) = Ko [y sin(%(s’)
+qo08’ + ¢g)ds’ (cf. Eq. 17), is explicitly given by

S 5

Go(s1,52, ¢g) _Ko// sin

sin<¢(s )+ qos’ + ¢0)>|¢Odsds’.

) + qos + (1)0) 37)

After integration over ¢, and using the known result
<cos(d~>(s1) - (Z~3(S2))> = e 1==l/2s which results from

the WLC-type probability distribution of the field 5, ie.,
P[%] ~ exp(—2 fo ds$), one obtains the rotational
invariant correlatlon function in the form

S 52

G(s1,52) KO// 2’(/’ cos(qo(s — s))dsds’. (38)
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Computation of the integrals in Eq. 38 gives finally the 1 L

following expression for the polymorphic contribution to Bo(t) — do(0) = & / 1 / [(s,7)ds | d (42)
) )

the transverse displacement: L 5

2 2Kol¢ { —
o(s) ) =— " —— P —e YP;5cos(qps
() =35 g » cos(qos)

+e TPy sin(qos)}

(39)

with Py (s)= 24131 — 6x +x%) =3l (1 +x —x* — x%)s* +
(14 3x+3x% +27)5%, Py(s)= 2405 (1 — 6x +x%)  +12[3
(1 —2x—3x%)s, and Ps(s) = 19205qo(1 — x) + 24L3q0
(3 + 2x — x%)s, where we have introduced the notation
X = 41?/,413.

From Eq. 39, we get the polymorphic persistence length
lpol( s) defined in Eq. 35, and in turn the global persistence
length [(s) depicted in Fig. 13. Its physical interpretation
is discussed in the main text.

We now consider the second definition of the persis-
tence length (s —s') = |[s — s'|/V(s — s'). From Eq. 38,
the angular variance V, can easily be evaluated as

214 (1~ 4438
1+ 4ld)q0

ZK(Z)lqg
1+ 4l¢)q0

Vol (s) =

4KOZ2 e I (40)

(1 + 4l¢q0)
—4qol4 sin(qos))

5 ((1 - 4qéli) cos(qos)

The resulting persistence length [, (depicted in Fig. 13)
shows a rich behavior similar to the persistence length /;(s)
but displays a functional form distinct from the Ilatter.
However, as expected, both curves reach the same
asymptotic value at very short and very long MT lengths.

D. Zero-mode dynamics

The evolution of the zero mode ¢ (¢) is given by Eq. 28 as

L

d ! _1/F¢(s,t)ds (41)
0

—o(t) = o

with a friction constant & = & + Eexr, Where &oyq 18
given by Eq. 27. The correlation function of the thermal
white noise Ty(s,2) is (Ty(s,0)Ty(s', 7)) = D(s —
s")0(t — ') with a coefficient D that can be determined in
the following manner. Notice first that ¢ performs free
Brownian motion and that its quadratic fluctuations

necessarily satisfy the relation <(¢>0(t) - ¢0(O))2> = ZL’%TI.

On the other hand, integrating Eq. 41 yields

and exploiting the white noise type auto-correlation of

I one obtains <(¢0(t) - ¢0(O))2> = 512%

readily deduce D = 2&,,kgT, as expected from the fluc-
tuation—dissipation theorem.

The relaxation time is generally given from the time
correlation function <yp(s, 0)ypoi(s, 1)> with the lateral
position ypei(s, 1) = Z—g (sqo cos(py(t) + o) + sin(¢py(t) + o)
— sin(gos + ¢y () + o)) obtained from Eq. 14 with [, > s.
The average must first take into account all statistically
equivalent values of angular orientations o € [0,2x], such

that <yp01(s 0)ypot (s, > 0 <yp01(s, 0)ypol (s, t)>a%, and

t, from which we

we obtain
(pot(s, O)pa(s, 1)) = (321(5) ) {eos((r) = bo(0)))

(43)
with <y12)01 (s) > = Z% <52 4 1%%(405) ssir;((:]ns))7 corre-

sponding to the static result (Eq.39) in the limit
slly < 1. With 42 defining a simple Gaussian random
walk process, one straightforwardly obtains

(cos(¢o(1) — ¢o(0))) = e™** (44)
with the relaxation time given by
flot
45
Lot (45)

E. Comment on MT surface attachment
and the robustness of “wobbling”

Throughout this work we have assumed that the free
rearrangement of the polymorphic lattice states is not sig-
nificantly hindered by the covalent surface attachment of
the MT, as e.g. performed by Pampaloni et al. (2006) and
Taute et al. (2008). This assumption is integral to the
“wobbling” motion and in turn to understanding the static
and dynamic data scaling. It therefore deserves closer
consideration.

In the experiments by Pampaloni et al. (2006) and Taute
et al. (2008), the adsorbed MT part is attached to a gold
(electron microscopy grid) surface via thiol groups. It is
likely that ~1-2 protofilaments will establish localized
chemical contacts with the gold microgrid. While sub-
stantial perturbation of the dimer such as denaturation
appears unlikely, it is unclear to what extent this procedure
will perturb the inner (polymorphic) dynamics of the entire
tubulin dimer units. In principle, one can anticipate two
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plausible scenarios that would interfere to a varying degree
with the free “wobbling” motion:

S1. Due to high cooperativity (large coupling J) the
polymorphic state transition can propagate within a
certain penetration depth into the adsorbed (straight-
planar) MT section.

S2. The cooperativity is too weak to compete with the
constraints imposed by the surface (including chem-
ical perturbations), and the polymorphic transition
does not propagate into the straight adsorbed MT
section.

In both cases we have a nonvanishing deflection angle
between a forced (adsorbed) planar section and the free
helical section direction, effectively causing the charac-
teristic MT “kink™ at the surface interface. However, the
rotational mobility of this “kink” (wobbling mode) which
is integral to our theory will be affected in a slightly dif-
ferent manner.

If in case S1, in the adsorbed section, the polymorphic
order parameter P can rearrange to some extent (by
switching the monomer states without causing detectable
deformation) except for possibly in the few surface-inter-
acting dimers, then the effects of the “wobbling” motion
will be hindered only mildly in the following sense. To
retrieve the anomalous lateral fluctuations it is indeed
enough for the wobbling angle ¢, to move freely in a
certain nonvanishing angular interval. A single complete or
multiple rotations of the order parameter P are not strictly
necessary for the “hinge” effect, and they are in fact
equivalent in lateral projection (as in experiment) to the
motion of the wobbling angle ¢ in the smaller interval [—
n/2, +n/2]. Note that even intervals smaller than this will
lead to a similar phenomenology (in particular, dynamic
and static
variable scalings with length). Thus, the conical hinge-like
motion is in a sense robust with respect to a limited local
rotational hindrance perturbation in the adsorbed region.

In scenario S2 the situation is somehow simpler as the
polymorphic dynamics of the adsorbed region is not
involved in the process (the polymorphic order parameter
vanishes there: P = 0). Wobbling is realized through a
coherent rearrangement of the free MT section alone,
without strong coupling to the adsorbed region.

Although both attachment scenarios S1 and S2 appear to
some extent plausible, at present it is difficult to make
reliable statements about their respective likelihood. In fact
only a posteriori can we cautiously state that, based on the
experimental static and dynamic measurement evidence,
the chain “wobbles” to a high enough extent to display the
effects that we observe.
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