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Abstract Microtubules have been in the focus of bio-

physical research for several decades. However, the con-

fusing and mutually contradictory results regarding their

elasticity and fluctuations have cast doubt on their present

understanding. In this paper, we present the empirical

evidence for the existence of discrete guanosine diphos-

phate (GDP)–tubulin fluctuations between a curved and a

straight configuration at room temperature as well as for

conformational tubulin cooperativity. Guided by a number

of experimental findings, we build the case for a novel

microtubule model, with the principal result that microtu-

bules can spontaneously form micron-sized cooperative

helical states with unique elastic and dynamic features. The

polymorphic dynamics of the microtubule lattice resulting

from the tubulin bistability quantitatively explains several

experimental puzzles, including anomalous scaling of

dynamic fluctuations of grafted microtubules, their appar-

ent length–stiffness relation, and their remarkable curved–

helical appearance in general. We point out that the mul-

tistability and cooperative switching of tubulin dimers

could participate in important cellular processes, and could

in particular lead to efficient mechanochemical signaling

along single microtubules.
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Introduction

Microtubules (MTs) are fascinating biological macromole-

cules that are essential for intracellular trafficking, cell

division, and maintenance of cell shape. They display unique

elastic and dynamic behavior, inherited by their complex

self-assembling nanotube structure. Surprisingly, despite an

enormous accumulation of knowledge about their structure,

the static and dynamic properties of MTs have challenged all

attempts at a fully coherent interpretation. In this paper we

develop the line of thought leading towards a new theory that

provides a more comprehensive understanding of these

properties of MTs. The fundamental result is that stabilized

MTs spontaneously form large-scale superhelices of micron-

sized pitch and diameter. The MT’s superhelical structure

turns out to be a consequence of a cooperative interaction

between its individual subunits that can sustain several stable

curved conformations. Cooperativity of fluctuating internal

degrees of freedom in combination with the cylindrical MT

symmetry lead to a helical state with very unique charac-

teristics in the world of macromolecules: MTs are helices

that are permanently but coherently reshaping, i.e., changing

their reference ground-state configuration, due to thermal

fluctuations. In particular, when clamped by one end, MTs

undergo an unexpected zero-energy motion. As we will see,

this could be the key to a consistent interpretation of certain

challenging experimental results not captured by the con-

ventional scenarios and models. It is worth remarking

that the large majority of experiments probing the above-

mentioned properties are in vitro experiments on MTs with

stabilizing drugs. We stress this point, as the experimentally

prevalent presence of stabilizing agents is not innocent and

could modify the properties of MTs. Nevertheless, there are

reasons to believe that the theory developed here might be

valid also for nontreated MTs.
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Before embarking on the road to a ‘‘polymorphic MT

theory,’’ we first review the conventional understanding of

the common MT properties as well as some key experi-

ments which will be our necessary guides towards the

model we propose. This paper, which extends and deepens

a previous short presentation of the idea of polymorphic

MTs (Mohrbach et al. 2010), is composed of two parts. In

the first part, we provide conceptual and graphical expla-

nations of the ideas behind the model and investigate

consequences of the polymorphic MT model developed

herein. We hope that this part is self-consistent and didactic

enough that a general reader can grasp the basic underlying

ideas. In the second, more technical part, the mathematical

model is developed and quantitative results are presented.

The details and derivations are left to an extensive

appendix.

Short review of what is understood about microtubules

Microtubules are cytoskeletal protein filaments of eukary-

otic cells fulfilling different structural and mechanical

functions in the cell: MTs act as ‘‘cellular bones’’ strongly

influencing the cell shape, constitute the main routes for

molecular motor-mediated intracellular cargo transport

(Howard 2001; Amos 1991), and perform other important

tasks such as stirring the cytoplasm (Kulic et al. 2008).

Besides, MTs play a central role in the assembly of the

mitotic spindle during cell division and are at the heart of

the functioning of cilia and flagella (Alberts et al. 2002).

This versatility of MTs in a variety of biological functions

mainly relies on their unique high stiffness and on their

dynamics of assembly and disassembly. The high rigidity

of MTs (similar to hard plastic) is due to their structure,

which is known in exquisite detail from three-dimensional

(3D) electron microscopy reconstructions (Nogales et al.

1999; Huilin et al. 2002): MTs are hollow tubes whose

walls are formed by assembly of a variable number N of

parallel protofilaments (PFs). The PFs themselves are built

by head-to-tail self-association of the ab-tubulin heterodi-

mer protein subunit (endowing MTs with a polarity) whose

structure has been resolved by electron crystallography

(Nogales et al. 1998; Löwel et al. 2001).

In vivo, MTs most commonly appear with 13 PFs

(Bouchet-Marquis et al. 2007) (although there are excep-

tions depending on the cell type), whereas in vitro a variety

of structures with PF number ranging from N = 9 to 16

were observed (Wade et al. 1990; Chretien 1991). Transi-

tions between different lattice types (mostly with gain or

loss of one PF) within a single MT are also frequent (Ray

et al. 1993; Chrétien et al. 1992; Chretien 2000). The MT

lattice can accommodate these different structures by

twisting the PFs around the central MT axis, although this

process is energetically costly. The typical lattice twist

repeat lengths (pitches) are: ?3.4, ?25, and -6 lm for

MTs with N = 12, 13, and 14 PFs, respectively, with ‘‘?’’

and ‘‘-’’ denoting right and left-handed twists (Wade et al.

1990; Chretien 1991, 2000; Ray et al. 1993; Chrétien et al.

1992). As we will see, the lattice twist is an essential

property of the model proposed below. Any deviation from

the most frequent, energetically favorable, and thus less

twisted configuration N = 13 implies an internal prestrain

in the MT lattice. The latter stress can locally deform the

end portions of the lattice or even destabilize it (Hunyadi

2007).

Another internal prestrain in the MT lattice is believed

to be caused by the tubulin subunit, which upon incorpo-

ration into the lattice hydrolyzes a bound guanosine tri-

phosphate (GTP) molecule, converting it quickly into a

GDP–tubulin form which has the tendency to form a

curved state, curling radially away from the axis (Man-

delkow et al. 1991; Nogales et al. 2003). The constraint

imposed by the MT lattice however maintains the GDP–

tubulin dimers in a straight unfavorable state, in turn

trapping mechanical prestrain. In this conventional view,

MTs are seen as internally prestrained but intrinsically

straight Euler beams. The GDP–tubulin prestrain is also

believed to trigger rapid depolymerization called the

polymerization ‘‘catastrophe’’ (Mitchison 1984). MT sta-

bility is regulated either by the presence of a thin layer of

as yet unhydrolyzed GTP tubulin dimers at the growing

MT end [the so-called GTP-cap model, (Erickson 1992;

Janosi et al. 2002)] or by the binding of MT-associated

proteins (MAP) or of drugs such as taxol.

What is not understood about microtubules

Mechanical properties of stabilized MTs

The presence of the polymerization dynamics often presents

an obstacle to investigation of the mechanical properties of

the MT lattice. As previously mentioned, it can be switched

off by stabilizing agents such as taxol or MAPs. In the bulk

of the available in vitro studies, taxol stabilization has been

the experimental method of choice for investigating the

elastic properties of MT. It is believed that taxol maintains

tubulin dimers in an approximately straight conformation

and thus prevents depolymerization (Arnal 1995; Amos

1999; Xiao et al. 2006). However, direct electron micros-

copy (EM) investigations of single taxol–GDP PFs (Elie-

Caille et al. 2007) reveals a more complex and interesting

picture. A taxol-stabilized single PF can in fact coexist in

several conformational states with comparable free ener-

gies: a straight state jst
PF � 0 and a weakly curved state with

intrinsic curvature jwc
PF � 1=250 nm (Fig. 1a). A third,
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highly curved state with jhc
PF � 1=20 nm additionally

appears after longer observation periods. Notably, Elie-

Caille et al. (2007) pointed out a cooperative nature of the

straight to curved transition within single PFs. These

important findings of several conformational tubulin dimer

states and cooperative interaction between them will form a

central ingredient of our model below.

Going from a single protofilament to the whole tube, a

central mechanical property of interest often measured for

stabilized MTs is the persistence length, defined as lp = B/

kBT. Here B � Y stands for the flexural rigidity, which for

an isotropic beam is proportional to its elastic Young’s

modulus Y. Several experimental approaches have been

developed to measure the bending stiffness of taxol-stabi-

lized MTs. One method consists in measuring the thermal

shape fluctuations of MTs via dark-field microscopy (Gittes

et al. 1993; Venier et al. 1994) or fluorescence light

microscopy (Mickey and Howard 1995). Alternatively in

several other experiments, lp has been determined by

applying controlled bending forces via hydrodynamics

(Venier et al. 1994), optical tweezers (Felgner et al. 1996;

Kikumoto et al. 2006; Kurachi et al. 1995; Takasone et al.

2002), and atomic force microscopy tips (Kis et al. 2002).

Interestingly, Gittes et al. (1993) observed that stabilized

MTs are not perfectly straight but rather contain some form

of quenched curvature disorder which needs to be sub-

tracted from the measurements. In the same vein, dark-field

imaging of the thermal fluctuations of the free end of

axoneme-bound MTs shows that taxol-stabilized MTs

adopt a three-dimensional helicoid structure (Venier et al.

1994) (we return to this point below).

The persistence length obtained from these different

experiments is placed in the range 1–8 mm, with some

newer studies going down to 0.1 mm (cf. below). For a

standard semiflexible polymer (such as actin or DNA) we

expect lp to be a material constant, in particular being

independent of the filament length. However, for MTs, the

experimental lp data are not only highly scattered but

extremely confusing on this point. That the persistence

length could indeed depend on the MT length was first

mentioned and observed by Kurachi et al. (1995) and

Takasone et al. (2002) and confirmed by other experi-

mental measurements probing either the thermal movement

(Vanden Heuvel et al. 2007) or the active bending defor-

mations by electrical fields of individual taxol-stabilized

MTs gliding on a kinesin-coated surface (Vanden Heuvel

et al. 2008; Kim et al. 2008). In particular, these tech-

niques gave, for short MT segments with submicron length,

persistence lengths between 0.08 and 0.24 mm.

This intriguing ‘‘length-dependent stiffness’’ was also

investigated by Pampaloni et al., who measured the lateral

fluctuations of MTs grafted to a substrate (Pampaloni et al.

2006). These authors found a lp falling within the range

0.11–5.04 mm for MT lengths varying from 2.6 to

47.5 lm, with a strong linear correlation between length

and lp. A similar experiment done by Taute et al. (2008)

measured the longest relaxation time smax(L) of MTs of

various lengths L. It was found that MTs exhibited

unusually slow thermal dynamics compatible with

smax � L3 (cf. Fig. 9), in sharp contrast to standard semi-

flexible filaments with smax � L4. Brangwynne et al.

(2007) reported that the relaxation time for long MTs

(L [ 10 lm) extracted from two-dimensional (2D) shape

analysis of taxol-stabilized fluorescent MTs shows an

anomalous dynamics on short scales as well. Furthermore,

Fig. 1 Empirical evidence for tubulin bistability: a A single taxol-

stabilized protofilament can coexist in a straight jPF � 0 and a

slightly curved jPF � 1=250 nm state (reproduction from Elie-Caille

et al. 2007); b Taxol-stabilized microtubules in gliding assay

experiments can switch to a stable circular state and move on circular

tracks (from Amos 1991; Vale et al. 1994). Microtubules are

occasionally observed to switch back and forth between the circular

and straight states. c Taxol-stabilized microtubules form a three-

dimensional helicoid structure with 15 lm pitch (from Venier et al.

1994)
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it has also been experimentally found that the rigidity of

MTs depends on their growth velocity (Janson 2004). All

these experiments measuring the bending stiffness and the

bending dynamics led the community to the conclusion that

the ‘‘beam of life’’ cannot be seen as a simple Euler beam.

Its complex internal structure should determine its elastic

and dynamical properties. However, which internal mode

contributes to the now obvious elastic complexity is the

important question, a convincing answer for which is still

lacking.

Helices and rings

Even more intriguing than the issue of MT elasticity is

perhaps the question: What is the ground state of a MT?

While the naive answer—a straight rod—would be the

most accepted view, a number of experiments put this

mundane, simplistic picture in doubt; for instance, wavy

sinusoidal and circular shapes are frequently observed

when MTs are adsorbed to glass surfaces or confined

between them. In this confined case, Fourier mode anal-

ysis of MT deformations systematically reveals that a few

discrete modes have larger amplitude than the fluctuations

around them (Gittes et al. 1993; Brangwynne et al. 2007;

Janson 2004; cf. also Vanden Heuvel et al. 2007, supple-

mentary material). This is a strong hint of the presence of

some type of ‘‘frozen-in’’ curvature, dynamically quen-

ched on experimental time scales. Likewise in motility

assays, it is often seen that, when MTs glide over a surface

coated with molecular motors, they follow wavy sinusoi-

dal and often circular tracks (Amos 1991; Vale et al.

1994) (cf. Fig. 1b). In this context, particularly interesting

is the observation by Amos and Amos (1991) of the for-

mation of permanently circling MTs (see Fig. 1b). These

unusual stable circular gliding structures persisted for

many cycles and occasionally straightened again. As

written by Amos (1991), this suggests that ‘‘an intact

tubular polymer is capable of holding more than one

conformational state without the help of an external

force.’’ From EM images it was inferred that the under-

lying mechanism stems from the balance of individual

taxol–GDP–tubulin dimers between two or more different

stable conformations (Amos 1991).

An even clearer hint towards the real nature of the

frozen-in curvature was, as already mentioned, discovered

by Venier et al. (1994) (Fig. 1c), who described stabilized

MTs as ‘‘wavy periodic shapes’’ with half-period of about

7–8 lm. This observation, combined with the fact that

MTs often went out of focus, led the authors to ‘‘suggest

that taxol-treated microtubules may adopt a three-dimen-

sional helicoid structure of 15 lm pitch.’’

Therefore, it seems that the MT curvature is a persis-

tent attribute attached to its lattice. Any serious attempt to

fully understand the complexity of MT elasticity cannot

avoid the question of its ground state. Indeed, under-

standing fluctuations around a particular state will be

futile as long as the origin of the state itself remains

obscure.

The soft shear model

A first theoretical attempt to cope with some aspects of

the described MT mechanical complexity was the ‘‘soft

shear model’’ (also called the ‘‘Timoshenko beam model’’

or ‘‘anisotropic composite material model’’) (Kis et al.

2002; Pampaloni et al. 2006; Heussinger et al. 2007;

Mohrbach 2007). In this model the MT is considered as

an anisotropic fiber-reinforced material (Kis et al. 2002;

Pampaloni et al. 2006) with the tubulin protofilaments

acting as strong fibers weakly linked with easily shearable

interprotofilament bonds. Some specific equilibrium sta-

tistical and mechanical properties of this model were

investigated by Heussinger et al. (2007) and Mohrbach

(2007). An interesting peculiarity and inherent conse-

quence of this model is that any local lattice deformation

gives rise to a long-distance curvature relaxation (Mohr-

bach 2007) and can lead to a long-range interaction along

the MT contour. This aspect of the soft shear model

(SSM) is in phenomenological agreement with coopera-

tive deformations induced by enzymes such as katanin.

Furthermore, this model predicts a length-dependent per-

sistence length which approximately resembles the mea-

sured behavior (Pampaloni et al. 2006; Taute et al. 2008).

However, in detail it suffers from a number of difficulties

and inconsistencies, in particular:

• The ground state of the SSM is straight, in conflict with

the observation of a helical ground state (Venier et al.

1994).

• The SSM does not allow for lattice multistability as

observed by Amos and Amos (1991).

• The predicted value of the shear modulus is extremely

small (Pampaloni et al. 2006; Taute et al. 2008;

Mohrbach 2007) (105 to 106 times smaller than the

Young’s modulus). This would imply very strong

shearing in bent microtubule structures. This however

is unsupported by other experimental evidence. Indeed,

observations of straight and highly bent MTs show that

bending does not significantly modify the relative

position of the interprotofilament bonds (Chrétien et al.

1998).

• The dynamics of clamped MTs (Pampaloni et al. 2006;

Taute et al. 2008) does not emerge naturally from the

SSM. To reach agreement and fit the experimental

dynamics, the shear model needs to introduce an ad hoc

internal dissipation of unclear origin.
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• For short MTs (\4 lm) that model is very far off and

disagrees with the ‘‘plateau’’ region of the bending

stiffness versus length relations (cf. Fig. 3 in Taute

et al. 2008).

Careful reanalysis of clamped MT experiments (cf.

Figs. 2, 3 in Pampaloni et al. 2006; Taute et al. 2008)

reveals two features not captured by the SSM: the persis-

tence length scales for large L approximately as *L

(without signs of saturation) while the relaxation times

scale as *L3. This exotic behavior naively suggests the

presence of a limited angular hinge at the MT clamping

point. On the other hand, artifacts that could trivially lead

to a ‘‘hinged behavior’’ (such as loose MT attachment and

punctual MT damage) were specifically excluded by

experiments (Pampaloni et al. 2006; Taute et al. 2008).

Considering all these obstacles, it becomes increasingly

clear that the solution to all the puzzles requires a new and

radically different hypothesis.

Idea of polymorphic microtubule dynamics

The new scenario proposed here is based on the hypothesis

of cooperative internal MT lattice dynamics. The two

central assumptions of our model are as follows:

(I) The taxol–GDP–tubulin dimer is a conformationally

multistable entity and fluctuates between at least two

states on experimental time scales: a straight and an

outwards curved state (Figs. 1a, 2a).

(II) There is a nearest-neighbor cooperative interaction of

tubulin states along the PF axis.

Note that assumption I is very different from the con-

ventional picture where GDP–tubulin has only one ener-

getically favorable (curved) state. We will show that a

model based on assumptions I and II straightforwardly

leads us to the very origin of MT (super)helicity and pro-

vides a coherent explanation for static and dynamic mea-

surements in thermal fluctuation experiments.

In contrast to the soft shear model, the present model is

elastically isotropic but the monomer curvature is bistable.

As we will see, the ground state in this new model is a

Fig. 2 Elements of the ‘‘polymorphic tube model.’’ a The GDP–

tubulin protofilaments can fluctuate cooperatively between two

discrete states. The curved, r = 1 state is energetically preferred

over the straight, r = 0 state with an energy gain E ¼ �DG: A

junction between straight and curved states along the same protofil-

ament is penalized by a coupling constant E = ?J. b Competition

between tubulin switching energy and elastic lattice strain energy

leads to spontaneous symmetry breaking: MT bends to a randomly

chosen direction and assumes a nonzero polymorphic order parameter

P. The energy becomes invariant with respect to an arbitrary rotation

of the polymorphic phase angle /

Fig. 3 The straight state of the microtubule becomes unstable and

forms a spontaneous bend with fixed curvature pointing towards a

randomly chosen direction. The microtubule can assume one of the

N degenerate ground states and switches between them at no energy

cost; the effective potential has a shape reminiscent of a Mexican hat
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highly degenerate, three-dimensional helix fluctuating

between many equivalent configurations.

Conformational symmetry breaking and helix

formation

In this section we provide a simple pictorial panorama of

the consequences of assumptions I and II. What happens

when tubulin dimers obeying assumption I are trapped in

the circularly symmetric MT lattice? Starting from

assumption I we imagine that the straight and curved

GDP–tubulin states have a certain energy difference

DG [ 0; with the curved state being slightly more favor-

able. The strict preference for the curved state is however

only true if the tubulin dimers are free, i.e., not confined to

the lattice. The situation becomes more interesting once

they are incorporated into the lattice. Obviously the out-

wards bending tendency of the curved state is in conflict

with the geometry of the lattice. Switching a dimer on one

MT side will frustrate the dimers on the opposite side of the

tube and prevent them from switching at the same time. On

the other hand, the direct neighbors of the curved dimer (on

the same MT side) will profit and switch more easily to the

curved state, as the lattice is already slightly ‘‘prebent’’ in

the correct direction. This peculiar interplay of negative

and positive interactions gives rise to a clustering of curved

dimer states into a single block on one side of the tube (cf.

Fig. 2b).

This immediately raises the question of the orientation

of this curved dimer block. Which MT side will be selec-

ted, and in which direction will the MT overall bend, can

only be decided by the process of spontaneous symmetry

breaking; that is, if the ground state is a curved dimer

block, it will be a highly degenerate state (see Fig. 3). In

turn, it can be expected to move through the lattice ther-

mally at nearly no energy cost (apart from some friction).

This is the most essential feature of the present model.

So far we have considered only a single MT cross-sec-

tion. If assumption II (cooperativity) were not to hold, the

curved state blocks would pick their sides at each section

completely independently. The tube would locally curve in

random uncorrelated directions, and the effect of tubulin

multistability would remain essentially invisible at larger

scale. However, according to assumption II, the blocks

become correlated in orientation and prefer to stack on top

of each other. Macroscopically, this would then lead to a

bent—in fact circular—MT if the PF were not twisted

around the central MT axis (see Fig. 2b). This provision

brings us to the final interesting point. As already men-

tioned, MT lattices are generically twisted; i.e., their PFs

are not strictly parallel. With a cooperative interaction

along the PFs—which are now twisting around the tube

axis—the final product of assumption I and II will be a

long-pitched helix. The pitch of the helix should coincide

with the lattice twist repeat length: ?3.4, ?25, and -6 lm

for MTs with N = 12, 13, and 14 PFs, respectively. The

created ‘‘polymorphic helix,’’ however will not be unique

and will be able to reshape between its N indistinguishable

orientation states.

When we graft one end of such a polymorphic helix onto

a surface [as, e.g., performed by Pampaloni et al. (2006)

and Taute et al. (2008], the helix will still be able to switch

between the equivalent orientations and perform a motion

that we call ‘‘wobbling’’ (see Fig. 4). It is exactly this type

of motion that can give rise to the static and dynamic

effects measured by Pampaloni et al. (2006) and Taute

et al. (2008).

To see this, we can approximate the movement of a

clamped polymorphic helix that is switching between its

equivalent ground states with a ‘‘rigid conical rotor’’ (see

Fig. 4). For such a rotor the transverse displacement q of

the MT end grows linearly with its length L. Using the

naive definition of persistence length lp � L3=3 q2
� �

(where

hi is the ensemble average) and the fact that q2
� �

/ L2, this

apparent persistence length becomes proportional to the

length, i.e., lp � L. This scaling (cf. Fig. 11) is in agree-

ment with the experimental results of Pampaloni et al.

(2006) and Taute et al. (2008), giving us the first hint that

the model is on the right track. Appendix E comments on

the robustness of this conical hinge-like motion against

limited local hindrance of the wobbling mode due to the

adsorbed part of the grafted MT.

Further encouragement comes from study of the

dynamics of the model. Making again the approximation of

a rigid conical rotation (induced by wobbling) the observed

Fig. 4 A clamped polymorphic microtubule with intrinsic lattice

twist attached at its end to a substrate (Pampaloni et al. 2006; Taute

et al. 2008) performs a peculiar movement. It forms a polymorphic

helix with N degenerate ground states and switches between them at

no energy cost. The approximately conical motion with opening angle

a leads to anomalous lateral fluctuations q2
� �

� a2L2, radically

different from all other semiflexible filaments
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unusual scaling of the longest relaxation time smax / L3

can also be easily understood. In fact, a slender object of

length L rotated along a conical surface has a friction

constant nrot / L3: In turn, the longest relaxation time is

given by the diffusional equilibration time on the cone, i.e.,

smax / nrot=kBT / L3 (cf. Fig. 12). It turns out that the

model correctly predicts both the exponent and the pre-

factor of the experimental relaxation time.

In addition, it is further reassuring that the helical

ground state(s) of the model provides a rationale for the

observation of MT helices by Venier et al. (1994).

In vivo implications of microtubule polymorphism

The bulk of observations cited herein were made in vitro

on taxol-stabilized MTs. It is known that taxol inhibits MT

disassembly by maintaining the tubulin dimer in a state that

strongly favors polymerization. However, from the exper-

iments reported above it is also clear that taxol does not

suppress all tubulin conformational changes: the taxol–

GDP–tubulin dimer has multiple stable conformations

(Elie-Caille et al. 2007). How do these in vitro findings

relate to MTs in vivo?

It is a common empirical observation in many in vivo

systems that, despite their high bending stiffness, MTs are

often seen curved or highly wavy on micron scales (Bicek

et al. 2009; Brangwynne et al. 2006, 2007 ; Keating et al.

1997; Kaech et al. 1996; Samsonov et al. 2004); for

instance, in Bicek et al. (2009), highly sinusoidal MTs on

the periphery of living LLC-PK1 cells were observed.

These shapes are usually explained as a consequence of

motor-induced buckling opposed by a gel-like environment

that leads to finite-wavelength buckling (Brangwynne et al.

2006). While this ‘‘buckling in a gel’’ interpretation is

physically appealing, a closer look at the data in Bran-

gwynne et al. (2006) (in particular the accompanying

movie material) reveals an absence of correlation in

buckling directions of neighboring MTs. This observation

puts a question mark over the participation of a background

continuum gel, as in this case the strains in the gel would

necessarily propagate to neighboring microtubules and lead

to spatially correlated buckling events, in sharp contrast

with observations. Therefore, we are left with a robust

phenomenon of sinusoid, constant-wavelength MTs, but

without a definite interpretation so far.

The phenomenology of stable rings (Amos 1991) and

wavy sinusoidal MTs forming in gliding assays (Vale et al.

1994) is strikingly similar and visually indistinguishable

from the pure in vivo observations (Bicek et al. 2009;

Brangwynne et al. 2006, 2007; Keating et al. 1997; Kaech

et al. 1996; Samsonov et al. 2004). Indeed, in both situa-

tions highly curved lattice states of very similar magnitudes

jMT � 1� 2 lm�1 are readily observed. This analogy

between in vivo and in vitro cases suggests that tubulin

dimers, both in vivo and taxol stabilized (in vitro), possess

an identical highly curved state (jhc
PF � 1=20 nm). This

highly curved state appears to be activated within the lat-

tice only under compressive loads and seems to be a uni-

versal property of GDP–tubulin itself, independent of taxol

stabilization.

On the other hand, the weakly curved state of taxol–

GDP-dimer (jwc
PF � 1=300 nm) is soft enough to be acti-

vated by thermal fluctuations. The empirical evidence for

the weakly curved state in vivo is far less obvious than for

the highly curved state. The slight deformations induced by

the former would be more difficult to distinguish from

other MT-deforming effects in living cells such as motors,

polymerization forces, presence of lattice defects, bun-

dling, and microtubule-associated protein action. However,

the observed phenomenology of length-dependent persis-

tence length of MTs growing from centrosomes in egg

extracts (Keller et al. 2008) (no taxol present) qualitatively

and quantitatively resembles the in vitro observations

(Pampaloni et al. 2006; Taute et al. 2008). This is one

more indication that the dynamic MT polymorphism could

persist also in vivo.

At least two possible biological implications of the

helicoidal polymorphic MT nature come immediately to

mind. First, a curved or helical beam under compressive

load responds like a mechanical spring and is therefore

much softer (in tension, compression, and bending) than a

straight beam. Therefore, a network of helical MTs might

be important for the overall mechanical compliance of the

cell. A perfectly straight MT buckled by an extracellular

load would be much more susceptible to mechanical failure

and depolymerization than a soft, compliant helix. Second,

helical shapes are geometrically (topologically) prevented

from side-by-side aggregation and can thus evade formation

of bundles, instead forming loose networks with many

fewer contacts. It appears that a tuned helicity (that can be

switched on or off) could be a good mechanical control

parameter for the formation of different cytoskeletal struc-

tures. While the bulk of the cytoplasmic MTs are preferably

in the loose network state (favored by helicity), in occa-

sional situations such as in neuronal axons, straight aligned

MTs are required. In such a situation, bundling could be

triggered by switching the lattice to the straight state.

Remarkably, in the process of axonal retraction, the straight

axonal bundle is destabilized (and eventually contracts

towards the cell soma) by an apparent transition of the MTs

to a wavy coiled state (Fridoon et al. 2000) very reminiscent

in shape to single wavy MTs from cell soma (Bicek et al.

2009; Brangwynne et al. 2006, 2007; Keating et al. 1997;

Kaech et al. 1996; Samsonov et al. 2004).
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In general, MT polymorphism might have other, less

obvious biological implications that still have to be iden-

tified. In particular, a more speculative possibility is that

tubulin’s allosteric multistability might also be a piece in

the puzzle of MT ‘‘catastrophes.’’ A cooperative curvature

switch might trigger a transition from growth to depoly-

merization. Maybe the most fascinating aspect could lie in

the possibility of signal transmission along single MTs via

a long-range conformational switch. If our model is cor-

rect, this is the most inherent and distinct consequence of

the underlying mechanism.

This concludes the qualitative description of the essen-

tial ideas behind the polymorphic tube model. In the fol-

lowing we switch gears and present in more quantitative

detail the mathematical model. The mathematically less

inclined reader is invited to browse through the figures and

comparisons with experiments, maybe pick up additional

concepts (such as polymorphic defects and their dynamics),

and jump to the ‘‘Perspectives’’ section, which underlines

the essential biological consequences.

The polymorphic tube model

Until now the discussion has been qualitative, whereas in

the following we build the mathematical model of the

polymorphic MT. We will provide quantitative arguments

and model experimental data, thus justifying a posteriori

the previous discussion. In this section, we focus on the

thermally induced weakly curved state in taxol-stabilized

MTs, leaving the case of mechanically induced highly

curved MTs for further work.

We model the GDP–tubulin dimer state by a two-state

variable rn(s) = 0, 1 corresponding to the straight and

curved state at each lattice site. n = 1, …, N is the cir-

cumferential PF index, and s [ [0, L] is the longitudinal

position variable along the MT centerline. We recall that

our model is based on the following assumptions:

(I) The taxol–GDP–tubulin dimer fluctuates between two

states—straight and curved (Fig. 2a)—with an energy

difference DG [ 0 favoring the curved state. The

energy density resulting from the switching of tubulin

dimers (at a given MT section) is then given by

etrans sð Þ ¼ �DG

b

XN

n¼1

rnðsÞ ð1Þ

with b � 8 nm being the dimer length.

(II) There is an Ising-type nearest-neighbor cooperative

interaction of tubulin states along the PF axis with an

interaction energy J [ 0 favoring nearest-neighbor

dimers on the same PF to be in the same state. This

leads to the interaction energy density

einter sð Þ ¼ � J

b

XN

n¼1

2rn sð Þ � 1ð Þ 2rn sþ bð Þ � 1ð Þ: ð2Þ

The final term required for our description is the elastic

energy density of the MT lattice. For a usual isotropic

Euler beam the material deformations e are related to the

centerline curvature vector j~ via e ¼ �j~ � r~ with r~ the

radial material vector in the cross-section. For a

polymorphic MT, modeled as a continuum material made

of N PFs (N = 11–16), its actual deformation will depend

on the polymorphism-induced prestrain epol: In this case the

elastic energy density of the MT can be written as

eel sð Þ ¼ Y

2

ZRo

Ri

Z2p

0

e� epol

� �2
rdrda; ð3Þ

where the integration in eel goes over the annular MT

cross-section with Ri � 7:5 nm and Ro � 11:5 nm being

the inner and outer MT radii, respectively. The prestrain

epol is a function of the polymorphic state of the tubulin

dimers. Its definition requires a decomposition of the

tubulin dimer into an inner part (facing the tube axis) and

an outer part (facing outwards from the tube axis) (cf.

Fig. 5). We assume that each curved dimer state generates

a positive prestrain ?ePF on its inner part and an equal but

negative prestrain –ePF on its outer part. We can then

write epol s; r; að Þ ¼ ePFrn sð Þ I½Ri;Ro�dPF=2� rð Þ � I½Ro�dPF=2;Ro� rð Þ
� �

�
I½2p

N nþq0s;2p
N nþ1ð Þþq0s� að Þ; where I[�](x) = 1 if x 2 ½�� and 0

otherwise (Heaviside function) and dPF is the PF diameter.

The parameter q0 appearing in the angular part of epol is the

natural lattice twist that leads to the proper geometric

rotation of a PF around the tube axis. This parameter is

lattice type dependent and takes discrete values 2p/

q0 = ?3.4 lm, ?25 lm, and -6 lm for MTs with

N = 12, 13, and 14 PFs, respectively (Wade et al. 1990;

Chretien 1991, 2000; Ray et al. 1993). We can estimate the

prestrain e PF from the experimental value of the single

Fig. 5 Strains and deformations in the polymorphic tube model. Each

tubulin dimer can fluctuate between a straight, r = 0 state and a

curved, r = 1 state with intrinsic curvature jPF. The curved tubulin

dimer generates a positive prestrain þePF on its inner part and an

equal but negative prestrain �ePF on its outer part with strains related

to observed dimer curvature via ePF ¼ ðRo � RiÞjPF=2
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switched PF’s curvature jPF � 250 nmð Þ�1
, measured by

Elie-Caille et al. (2007) on single taxol-stabilized PFs, to be

ePF ¼ dPFjPF=2 � 10�2: Collecting all energy contributions

together the total (elastic ? polymorphic) energy of the MT

is then given by

EMT ¼
ZL

0

eel þ etrans þ einterð Þds: ð4Þ

The ground state within this model is determined by the

interplay of the first two terms eel and etrans. The last term

einter determines the cooperativity and is responsible for the

suppression of defects in the ideal polymorphic order (cf.

Fig. 7). A large value of the cooperativity constant with

J � kBTL/b would imply a defect-free lattice. However,

the presence of the latter defects (and their motion) is a

necessary ingredient for the overall rearrangement of the

helix, as discussed below.

To understand the basic behavior of the ideal helical

ground state without defects, i.e., where PFs are individu-

ally in a uniform state (either curved or straight), we ini-

tially restrict ourselves to the simplified energy density

e = eel ? etrans. To investigate the MT geometry we first

introduce two reference frames (Fig. 2b). One is the

material frame with base vectors ðu~1; u~2; u~3Þ attached to the

MT cross-section. The other is an external fixed laboratory

frame with base vectors ðu~x; u~y; u~zÞ: Putting the MT along

the u~z axis direction and considering small MT angular

deflections we have u~z � u~3: In this case the two frames are

simply related to each other by a rotation transformation

R(s) given by the internal MT lattice twist q0, such that

ðu~x; u~yÞ ¼ RðsÞðu~1; u~2Þ with

RðsÞ ¼ cos q0s � sin q0s
sin q0s cos q0s

� 	
: ð5Þ

To rewrite e in a more illuminating fashion, we define two

important order parameters at each MT cross-section. The

first is the vectorial polymorphic order parameter

Fig. 6 Phase diagram of the

polymorphic microtubule model

as a function of the

polymorphic–elastic interaction

parameter c from Eq. 7.

Depending on the magnitude

and sign of c the microtubule

can be in an ‘‘all PF switched

state’’ (black), ‘‘no PF switched

state’’ (grey), or mixed curved–

helical state. Only the latter

‘‘mixed state’’ will display net

curvature and lead to an

observable helical appearance

Fig. 7 Defects in ideal polymorphic order soften the helical states

and give rise to ‘‘polymorphic dynamics.’’ Single defects carry a cost

proportional to their length, whereas double defects make only a local

energy contribution. The coexistence of left- and right-handed defects

(LH and RH) along the length leads to a ‘‘random walk’’ of the

polymorphic curvature direction and in turn to an effective torsional

deformation
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P~ sð Þ ¼
XN

n¼1

u~1 cos
2pn

N
þ u~2 sin

2pn

N

� 	
rn sð Þ:

Physically, P~, a 2D vector at each local material frame

section attached to the MT (cf. Fig. 2b), describes the

asymmetry of distribution (a kind of ‘‘polarization’’) of the

dimer states. It acquires a nonzero value only in the case

when the curved and noncurved states are azimuthally

separated on opposite MT sides; for instance, the ‘‘all-

straight’’ or ‘‘all-curved’’ PF state both correspond to the

same value P~ ¼ 0: Besides the vector P~, we need to define

a second (scalar) quantity

M sð Þ ¼
XN

n¼1

rn sð Þ;

which counts the total number of dimers in the curved state

at cross-section s (or in the Ising model terminology, the

‘‘magnetization’’). After integration of Eq. 3 over the

cross-section and some algebra, the energy density

e = eel ? etrans can be written in the more appealing form

e ¼ B

2
j~� j~pol

� �2þj2
1

p
N

cM � sin2ðp=NÞP~2

 �h i

ð6Þ

with the elastic bending modulus B ¼ Yp
4

R4
o � R4

i

� �
; with

j1 ¼ R0�R1ð Þ2

p R2
oþR2

ið Þ jPF and a dimensionless parameter

c ¼ jPF

j1

� 2NDG

bBj2
1

: ð7Þ

For small deviations of the tube axis from the u~z direction,

the polymorphic curvature vector j~pol in the external

coordinate frame u~x; u~y

� �
is related to P~ (in the internal

frame u~1; u~2ð Þ) via the transformation in Eq. 5 as

j~pol ¼ cRðsÞP~ ð8Þ

with c ¼ sin p=Nð Þj1, a geometric proportionality constant.

Phase diagram

In the absence of defects, the energy expression (Eq. 6)

allows one to determine the conformational ground state of

a polymorphic MT. To this end, we first resort to one

further small simplification and make the ‘‘single block

ansatz’’; i.e., at each cross-section we assume only a single

continuous block of p switched PFs. This ansatz was pre-

viously used by Calladine and has been proven very useful

in modeling bacterial flagellin polymorphic states (Asakur

1970; Calladin 1975). In the ground-state configuration the

curvature is given by j~¼ j~polðpÞ, whose absolute value

obtained from Eq. 8 is jpol pð Þ ¼ j1 sin pp=Nð Þ: The opti-

mal switched block size p = p* can be determined by

minimizing the second term in Eq. 6, which within this

ansatz becomes

e ¼ Bj2
1

2
c

p
N

p� sin2 p
N

p

 �
 �

: ð9Þ

This gives rise to an interesting MT phase behavior (cf.

Fig. 6). The latter only depends on the polymorphic–elastic

competition parameter c from Eq. 7, which measures the

ratio between the polymorphic energy of tubulin switching

and the purely elastic cost of this transition.

For c\ -1 the chemical switching potential DG

strongly dominates the elastic energy cost bBj2
1: Therefore,

switching is highly favorable and all the PFs will be found

in the r = 1 state. This gives rise to a straight but highly

prestrained configuration.

Analogously for c[ 1, the bending energy contribution

is too costly for PFs to switch at all. Therefore, in this

regime the PFs are all in the straight state with r = 0 and

the MT is consequently straight as well.

For -1 \ c\ 1 the situation is more interesting. In this

interval we have a coexistence of two locally (meta) stable

MT conformations: the straight tube (prestressed or not,

depending on the sign of c) and a curved lattice state with

p* switched protofilaments. For �c\c\c with c � 0:72,

the curved lattice state is the absolute energy minimum and

the straight state is only metastable. Therefore, in this

regime and in the absence of twist (q0 = 0), the ground-

state configuration of the whole tube would be a simple

circular arc section (cf. Fig. 2b). On the other hand, the

ground state of a microtubule bearing natural lattice twist

q0 = 0 will be helical (cf. Fig. 4).

It is easy to see that a stable helical state as observed by

Venier et al. (1994) is only possible for a switching ratio

p�=N 2 ½1=4; 3=4�: This together with jPF = 1/250 nm

(from Elie-Caille et al. 2007) and jpol p�ð Þ ¼ j1 sin pp�=Nð Þj j
provides us with a direct estimate of the radius of curvature

j�1
pol � 9� 14 lm: Very strikingly, this range closely

reproduces the observed MT helical curvatures as estimated

from Venier et al.’s work (1994) j�1
measured � 11 lm, lending

strong support to the model. Furthermore, taking the helical

state stability as an empirical fact (implying that cj j\0:72)

and assuming a typical protein Young’s modulus of Y �
1� 10 GPa enables a simple estimate of the transition

energy per monomer as DG � þ1:1 to ?11kT, a reasonable

range for a soft biological object.

In general, the full energy expression, including the

cooperativity energy term (Eq. 4), gives rise to a very

complex behavior. Here we will focus on some basic new

phenomena. It turns out that the most remarkable deviation

from standard wormlike chain (WLC) behavior arises from

the fluctuation dynamics of the polymorphic order param-

eter’s angular phase, which we consider in the following.
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Polymorphic phase fluctuations

Here we introduce a sightly different phenomenological

model that simplifies the study of Eq. 4 while still

reflecting important aspects and physical properties of it. In

this section we assume as before that the helical state is the

ground state and consider now the effect of the fluctuations

around it. To this end we decompose the polymorphic order

parameter as

P
!

sð Þ ¼ P sð Þ cos / sð Þð Þu~1 þ sin / sð Þð Þu~2½ �;

with P(s) being the ‘‘polymorphic amplitude’’ and /(s) the

‘‘polymorphic phase variable.’’ The latter determines the

orientation of the switched block tubulin dimers at each

cross-section with respect to the MT material frame. From

Eq. 8, the centerline curvature with respect to a fixed

external u~x; u~y

� �
frame is then

j!polðsÞ ¼ j0 cos q0sþ / sð Þð Þu~x þ sin q0sþ / sð Þð Þu~y

� �
;

ð10Þ

with j0 ¼ cPðsÞ:
In general, both the polymorphic phase / and amplitude

P can fluctuate along the MT contour and contribute to the

polymorphic energy. The phase fluctuations are induced by

creation and motion of polymorphic ‘‘double defects’’ (cf.

Fig. 7). The double defect, a kind of ‘‘polymorphic dislo-

cation’’ that can be either left or right handed, maintains the

number of switched protofilaments constant while reori-

enting the direction of curvature. At zero temperature the

lattice would be defect free, / would be constant, and the

polymorphic order parameter P~ would strictly follow

the lattice twist. The phase change /0 : d//ds will deviate

from zero if on relevant length scales there are enough

polymorphic double defects to allow for reorientation of

the polymorphic order parameter away from optimum. The

double defects carry only a limited local energy cost DE ¼
2J per defect and can be easily thermally excited if J.kBT:

In the approximation of a large number of PFs, assuming

that / can change continuously, we can write the phase

contribution to the energy as

Epolð/Þ ¼
C/

2

ZL

0

ds/02; ð11Þ

with the polymorphic phase stiffness C/ � kBT N2b
8p2

2þ e2J=kBT
� �

, which can be related to the density of double

defects with energy 2J (cf. Fig. 7 and Appendix A), giving

rise to a new length scale: the polymorphic phase coher-

ence length l/ = C//kBT. For MTs shorter than l/ we will

observe coherent helices, while on longer length scales the

helix softens significantly and eventually loses its helical

appearance.

In contrast to the just discussed polymorphic disloca-

tions which can be easily thermally excited, the variation of

the polymorphic amplitude P, i.e., change of the number of

switched PFs, is more energetically costly. Any deviation

of P from its optimum state P* (given by the phase dia-

gram) is associated with an energy cost E / ð Pj j � P�j jÞÞ2 �
l proportional to the length l of the region in the unfavor-

able state (cf. Fig. 7; see Appendix B). Therefore we

conclude that, on large enough scales, the polymorphic

phase fluctuations will be the dominant effect. Based on

this and on the observation of stable helical states (Venier

et al. 1994) we will in the following assume P = const.

For small deflections around the z axis, the unit vector

tangent to the MT’s centerline is approximately given by

t
!� ðhx; hy; 1Þ in the laboratory frame u~x; u~y; u~z

� �
; where

h
!¼ hx; hy

� �
are the centerline deflection angles in x/y

direction. The global centerline curvature j!¼ d t
!
=ds can

then be approximated as j!� h0x; h
0
y; 0


 �
, and the total MT

energy can be written as follows:

Etot ¼ Epol /ð Þ þ Eel h;/ð Þ: ð12Þ

The first energy term is the polymorphic phase contribution

(Eq. 11). The second term is the elastic bending energy

Eel h;/ð Þ ¼ B

2

ZL

0

ðh0
!
� j!polÞ2ds: ð13Þ

From Eqs. 11–13, we see that the zero-temperature ground

state corresponds to / = const. and h0
!
¼ j!pol, that is, to a

defect-free helix with a pitch given by the natural lattice

twist q0. At finite temperature, both elastic and polymorphic

fluctuations will be excited so that the curvature can be

decomposed as h0
!
¼ j!pol þ h0

!
el with h0

!
el, the purely

elastic contribution. This gives rise to a helical MT shape

described by the curvature j!pol þ h0
!

el and torsion s�/0 þ
q0: The MT lateral displacements away from the z axis can

be written as q!ðsÞ ¼ ðxðsÞ; yðsÞÞ ¼
R s

0
hxðs0ÞÞ; hyðs0ÞÞ
� �

ds0,

which for small deflections decouples into elastic and

polymorphic displacements q!ðsÞ ¼ q!pol þ q!el; where

q!el �
R s

0
h
!

elðs0Þds0 and q!pol �
R s

0
h
!

polðs0Þds0: The latter

can also be written from Eq. 10 as

q!polðsÞ ¼ j0

Zs

0

ds0
Zs0

0

des cos q0es þ / esð Þð Þ e!x

�

þ sin q0es þ / esð Þð Þ e!y

�
: ð14Þ
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In Fig. 8, snapshots of configurations of clamped MT

obtained from Monte Carlo simulations are plotted for

different concentrations of double defects (i.e., different

values of l/) with twist and no twist. It is interesting to

remark at this point that, based on the symmetry in the

problem, any MT configuration can be rotated around the

z axis with no energy cost. This seemingly trivial feature—

the energetic degeneracy—is in fact the most distinctive

and unusual property of a polymorphic chain. We consider

the consequences in the following.

The wobbling mode

By construction, a polymorphic chain as we describe it

here has a N-fold symmetry. Therefore, there are N dif-

ferent helical states of different orientations with the same

energy, i.e., N ground states. This energy degeneracy is

also reflected in the continuum model (where the N-fold

symmetry is approximated as continuous) by the rotational

invariance of Epol(/) (which depends only on /0). The

broken cylindrical to helical symmetry of the straight state

is then restored by the presence of a ‘‘Goldstone mode’’

/! /þ /0 consisting of a rotation of P by an arbitrary

angle /0 in the material frame (cf. Figs. 2, 3). This mode

comes energetically for free and leads to dramatic effects

on the chain’s fluctuations; for instance, for a MT clamped

at one end, this symmetry implies that the MT will ran-

domly rotate much like a rigid rotor, as shown in Fig. 4.

Note however that this rotation will still be associated with

a certain dissipation, as the system has to go over energy

barriers between two helical states. This barrier due to the

flipping of lattice states can be overcome at nonzero tem-

peratures by the creation of double defects which diffu-

sively propagate along the MT and eventually angularly

reorient the polymorphic order parameter P~: These

dynamic phenomena and the dissipation mechanisms will

be discussed in a later section.

In summary, the zero-energy mode that we also call the

‘‘wobbling mode’’ is an inherent feature of a helically

polymorphic filament and, as we will now see, could be the

culprit causing anomalous fluctuations of clamped MTs.

Persistence length anomalies

Among several definitions of the persistence length, we

consider here—for direct comparison with clamped MTs

experiments (Pampaloni et al. 2006; Taute et al. 2008)—

the ‘‘lateral fluctuation persistence length’’ defined as

l�pðsÞ ¼ 2=3ð Þs3=VðsÞ; ð15Þ

where VðsÞ ¼ q sð Þ2
D E

� q sð Þh i2 is the variance of q2 ¼
x2 þ y2, the transverse displacement at position s, and h�i is

the ensemble average. As in experiments (Pampaloni et al.

2006; Taute et al. 2008), we assume a rigid clamping point

at position s = 0, preventing the microtubule from trans-

lating and rotating at that point.

For an ideal semiflexible wormlike chain we expect that

the persistence length lp
* = lB is a position-independent and

definition-invariant quantity equal to the bending persis-

tence length lB = B/kBT. (For another more classical def-

inition of the persistence length, coming from the tangent

tangent correlation function, see also Appendix C). How-

ever for a polymorphic chain, the strict equivalence of lp
*

Fig. 8 Conical ‘‘wobbling’’ motion due to the rotational energy

degeneracy of the polymorphic MT model: snapshots of Monte Carlo

simulated lattice states. a Twisted MTs free of defects L/l/ 	 1 and

with numerous defects L/l/ [ 1. For larger number of defects, the

helix looses its coherent appearance. b For nontwisted MTs the

movement has a typical parabolic ‘‘trumpet-like’’ shape

Fig. 9 A typical shape of the effective persistence length l�p Lð Þ for a

clamped microtubule as obtained from Eqs. 16, 18, and 20. Most

generically, the curve displays three different regimes: (I) an initial

rapidly decreasing regime where polymorphic effects become more

effective with growing L (softening the chain), (II) a linearly growing

oscillatory regime corresponding to the coherent wobbling movement

of the clamped microtubule, and (III) an asymptotic plateau regime

where the helix progressively loses its coherence with growing L. In

this regime, the behavior tends to that of a classical semiflexible chain

yet with a renormalized effective persistence length given by Eq. 23
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and lB is not correct. To see this, we can decompose the

polymorphic and elastic fluctuations q!ðsÞ ¼ q!pol þ q!el:

Inserting this into Eq. 15 and taking into account that, for

small deflections, the two components decouple

q!pol q
!

el

� �
¼ 0 leads us to the following relation for the

persistence length:

l�p ¼ l�1
pol þ l�1

B


 ��1

ð16Þ

with the polymorphic persistence length given by lpol ¼
2=3ð Þs3=Vpol and Vpol ¼ qpol

2
� �

� qpol

� �2
: The average �h i

is now performed over the phase / governed by the energy

Eq. 11. More precisely, the average of any arbitrary

functional A[/] of the polymorphic phase can be

performed by first selecting one of the equivalent ground

states characterized by /(0) = /0 and then performing the

average over the polymorphic angle distribution (Eq. 11)

around the chosen ground state, i.e.,

A /½ �h ij/0
¼ 1

Z

Z
D~/A ~/þ /0

h i
exp � l/

2

Z L

0

ds~/02
� 	

;

ð17Þ

where ~/ ¼ /� /0 (and thus ~/ð0Þ ¼ 0) and Z ¼
R

D~/ expð� l/
2

R L

0
ds~/02Þ is the partition function. In a

second step, for a freely rotating polymorphic phase, we

integrate over the rotational zero mode /0 : A /½ �h i ¼
1

2p

R
A /½ �h ij/0

d/0: This operation correctly takes into

account the phase fluctuations over (and around) all

equivalent ground states related by the transform /!
~/þ /0: The rotational symmetry around the z axis

(integration over /0) readily implies qpol sð Þ
� �

¼ 0 and

x2
pol

D E
¼ y2

pol

D E
: Therefore, the polymorphic persistence

length can be written as

lpolðsÞ ¼ 1=3ð Þs3= y2
polðsÞ

D E
ð18Þ

with

y2
polðsÞ

D E
¼
Z2p

0

d/0

2p

Zs

0

Zs

0

hy;polðs1Þhy;polðs2Þ
� �

j/0
ds1ds2;

ð19Þ

whose computation (for details cf. Appendix C) leads to

the following mean-square displacement:

ypolðsÞ2
D E

¼ 2j2
0l/

3ð1þ 4l2
/q2

0Þ
4

P1 sð Þ � e
� s

2l/P2 sð Þ cos q0sð Þ
n

�e
� s

2l/ P3 sð Þ sinðq0sÞ
o
; ð20Þ

where Pi(s) are polynomial functions given in Appendix C.

A typical curve of lp
* versus s is provided in Fig. 9. In

general, it shows three different characteristic regimes,

denoted I, II, and III in the figure:

(I) At short distances to the attachment point s\smin �
p=q0 (half the polymorphic wavelength) the total

persistence length can be approximately given by

l�p � lB �
3j2

0l2
Bs

8
: ð21Þ

In the limit of very short distances s 	 lB
-1j0

-2, the poly-

morphic fluctuations become negligible and are completely

dominated by purely ‘‘classical’’ semiflexible chain fluc-

tuations. Not surprisingly, the persistence length coincides

then with the classical bending persistence length

lp
*(0) = lB. Starting from lB, polymorphic fluctuations

begin to contribute, reducing lp
*, which attains a global

minimum at smin � p=q0:

(II) For intermediate length values smin \ s \ l/, the

total persistence length displays a nonmonotonic,

oscillatory behavior around a nearly linearly growing

average

l�p sð Þ � 2

3

q2
0

j2
0

sþ 4

3

q0

j2
0

sin q0sð Þ: ð22Þ

This result is worth deeper understanding. A moment of

thought reveals that the oscillatory part with wavelength

2p/q0 is related to the helicity of the ground state. At the

same time the linear growth l�p sð Þ / a2s can be associated

with the roughly conical rotation of the clamped chain

(wobbling mode) which acts as an effective ‘‘rotational

hinge’’ at the attachment point (cf. Fig. 4). The sinusoidally

modulated rotation cone which builds an approximate

envelope for the chain’s motion has an opening angle a
which is related to the geometric features of the helix as

a = 2j 0q0
-1.

(III) Finally for very large distances from the attachment

point s � l/ we expect to recover classical results

of a semiflexible chain again. Indeed, in this

asymptotic regime the effective persistence length

reaches saturation with a renormalized constant

value l�p 1ð Þ ¼ 1= l�1
pol þ l�1

B


 �
; where

lpol ¼ 2l/q2
0j
�2
0 þ

1

2
j�2

0 l�1
/ : ð23Þ

Intuitively the helix then loses its ‘‘coherent nature’’—due

to strong variations of /0 and elastic fluctuations hel—and

the collective rigid rotational (‘‘conical’’) motion is finally

replaced by an uncorrelated segment movement. Not sur-

prisingly, the persistence length then becomes length

independent again. Curves for different values of l/ are

provided in Fig. 10.
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Untwisted MTs

While there are no completely twist-free MTs and every

lattice will have generically a small twist, one can still

formally study the interesting limiting case q0 = 0. Note

that the large estimated pitch of 13-PF MTs is finite and in

the range of J25 lm (Wade et al. 1990; Chretien 1991,

2000; Ray et al. 1993), while often assumed to be

approximately infinite. In such an ideal case the theory still

applies; however, the overall behavior of lp
*(L) will sub-

stantially change and become much less consistent with the

linear scaling found in experiments. While for q0L [ 1 the

chain to leading order moves on a linear cone (with fixed

opening angle a), for q0L 	 1 but still L 	 l/ the ‘‘wob-

bling’’ motion occurs on a quadratic cone (a ‘‘trumpet-

shaped’’ cone, cf. Fig. 8b). More precisely, for the excep-

tional case of untwisted MTs, the polymorphic part of

the lateral fluctuations (Eq. 20) behaves as ypolðsÞ2
D E

¼

2=3j2
0l/ P1 � e

� s
2l/P2


 �
with P1ðsÞ ¼ 24l3

/ � 3l/s2 þ s3;

P2ðsÞ ¼ 24l3/ þ 12l2/s: Therefore, for short MTs L	 l/;

the lateral fluctuations grow with the fourth power of the

length ypolðLÞ2
D E

� j2
0L4=8; whereas for long ones L �

l/, the deviation grows cubically, ypolðLÞ2
D E

¼ 2=3j2
0l/L3:

From this, the persistence length consequently has two

typical regimes. For L 	 l/ we deduce from Eqs. 16 and

18 that l�p Lð Þ � l�1
B þ 3=8j2

0L
� ��1

: This expression implies

that long, untwisted MTs appear increasingly softer with

growing length, and the effective persistence length decays

inversely l�p / 1=L for L� 1=ð3=8j2
0lBÞ and reaches a

limiting value l�p ¼ lB= 1þ 2lBl/j2
0

� �
for L� l/: For a MT

of L� 10� 20 lm we would expect l�p� 10� 20 lm, a

value two orders of magnitude smaller than observed by

Pampaloni et al. (2006) and Taute et al. (2008). This

decreasing behavior is in contrast with observations of
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Fig. 12 The experimental microtubule relaxation times (Taute et al.

2008) and the no-adjustable-parameter theoretical prediction (full

line) as obtained from static data in Fig.11 (with lB = 25 mm,

k = 7.5 lm, j0
-1 = 18 lm, and q0l/ � 1). The dashed line illus-

trates the long-length approximation (Eq. 33), displaying the charac-

teristic cubic scaling with length
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Fig. 11 Effective persistence length l�p as a function of position

from the attachment point along the clamped MT contour: exper-

imental data (stars and circles) (Pampaloni et al. 2006; Taute et al.

2008) and the theoretical prediction with lB = 25 mm, k = 7.5 lm,

j0
-1 = 18 lm, and q0l/ � 1

Fig. 10 Comparison of theoretical persistence lengths for different

values of the polymorphic phase coherence length l/ (lB = 25 mm,

j0 = 0.03 lm-1, and q0 = 0.8 lm-1). For l/ ¼ 1; the MT is a

(defect-free) coherent helix performing the ‘‘wobbling motion’’ (as in

Figs. 4 and 8a, left panel). The plateau regime—where elastic

fluctuations become dominant over polymorphic—is reached for very

long MT only (not seen in the figure). Finite l/ reduces the coherent

wobbling motion, shortening region II of Fig. 9, and the plateau

regime is reached earlier with decreasing l/
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l�p / L, leading us to the conclusion that the zero-twist MTs

do not constitute a significant portion of the experimental

data (Pampaloni et al. 2006; Taute et al. 2008) and that

twist is necessarily required for growth of lp
* with L.

Having developed some static consequences of the

polymorphic MT we now turn to its dynamical aspects.

Polymorphic phase dynamics

To describe the MT fluctuation dynamics we consider the

total dissipation functional Pdiss = Pext ? Pint, which is

composed of an internal dissipation Pint ¼ 1
2
nint

R
_/2ds (with

_/ 
 d/=dt) coming from the flipping of lattice states and an

external hydrodynamic dissipation Pext ¼ 1
2
n?
R

q
� 2

ds asso-

ciated with the time variation of the MT deflection q! s; tð Þ ¼
ðxðs; tÞ; yðs; tÞÞ: We assume that the friction constant (per

unit length) n? of the helical MT is approximately the fric-

tion constant n? ¼ 4pg= ln 2L=Rð Þ � 1=2ð Þ of a long slender

body of length L of (small) radius R 	 L moving in a fluid

with viscosity g at low Reynolds numbers. The time evolu-

tion equations of the phase variable /(s, t) and the lateral

displacement y(s, t) [and x(s, t)] are given by the coupled

Langevin equations

dEtot

d/
¼ � dPdiss

d _/
þ C/ ð24Þ

and

dEtot

dy
¼ � dPdiss

d _y
þ Cq ð25Þ

with C/=q the thermal noise terms. In general, the lateral

displacement y(s, t) has contributions from both

polymorphic ypolðs; tÞ � j0

R s

0
ds0
R s0

0
sin /ð~s; tÞ þ q0sð Þdes

and elastic fluctuations yelðs; tÞ �
R s

0
helðs0; tÞds0 and the

dynamics is highly nonlinear. In the regime L � l/ where

the helix loses its coherence, one expects to retrieve the

dynamics of the usual semiflexible filament with s� L4:

However, in the opposite and physically more interesting

regime L 	 l/, a new and different dynamic behavior can

be expected. As we learnt from the study of the static case

the effects of polymorphism become more pronounced at

shorter lengths. As we have seen in this regime, the

dominant motion is the wobbling rotation of a coherent

helix on a cone where elastic fluctuations become

negligible compared with polymorphic ones, i.e., yðs; tÞ �
ypolðs; tÞ: In this regime few polymorphic defects with

L 	 l/ are present and the phase can be approximated as

/ s; tð Þ � /0ðtÞ þ d/ s; tð Þ: Using this decomposition with

d/(s,t) 	 1 we can expand Pext to leading order as

Pdiss �
1

2
L nint þ nextð Þ _/2

0 þ O d _/2

 �

ð26Þ

with an external friction constant next given by

next ¼
n?j2

0

q4
0

2 1þ cos Lq0ð Þ � 4
sin Lq0

Lq0

þ q2
0L2

3

� 	
: ð27Þ

The evolution of the zero mode /0(t) reduces from the

Langevin equation (Eq. 24) to 0 ¼ � dPdiss

d _/0

þ C/, which

leads to the equation of motion

d

dt
/0 tð Þ ¼ 1

ntot

L�1

ZL

0

C/ s; tð Þds ð28Þ

with a friction constant ntot = nint ? next. Therefore,

/0(t) satisfies the simple Langevin equation (Eq. 28)

corresponding to a simple potential–free Brownian motion

with mean-square displacement given by (see Appendix D

for a more detailed explanation)

/0 tð Þ � /0 0ð Þð Þ2
D E

¼ 2kBT

Lntot

t: ð29Þ

In this limit (wobbling mode dominant), we have a roughly

rigid helix moving randomly along a cone and all the

physics is contained in the effective friction coefficient

ntot(nint, j0, q0, L) and its dependence on the internal dis-

sipation nint, the helix parameters j0, q0, and the length L.

For later comparison with experiments we compute the

longest relaxation time s given by the autocorrelation

function hypol(s, 0)ypol(s, t)i � e-t/s. Using Eq. 29, a short

computation (Appendix D) leads to

ypolðL; 0ÞypolðL; tÞ
� �

¼ y2
polðLÞ

D E
e�t=sðLÞ ð30Þ

with y2
polðLÞ

D E
¼ j2

0

q2
0

L2

2
þ 1�cosðq0LÞ

q2
0

� L sinðq0LÞ
q0


 �
as the static

mean-square displacement (Eq. 20) in the limit L 	 l/ and

with s(L) = Lntot/kBT as the longest relaxation time,

proportional to the total friction constant ntot. For very short

lengths L 	 lc = (3nintn\
-1)1/2q0j0

-1 when the hydrodynamic

dissipation is entirely dominated by internal dissipation, we

have a linear scaling

s Lð Þ � Lnint=kBT : ð31Þ

For larger L [ lc, the wobbling movement through the fluid

is the dominant source of dissipation and

s Lð Þ � LnextðLÞ=kBT ð32Þ

with next(L) given by Eq. 27. Note that the L dependence of

next relies also on the L dependence of n\(L), which for

simplicity has been modeled as the friction of an ideal

slender tube moving in a liquid. A more precise (but

difficult) determination of n\ could slightly change its
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variation with L, although not the general trends of next(L).

In particular, if we assume that n\ is L independent and

that Lq0 � 1, we have in this regime the scaling

s Lð Þ � n?
3kBT

j0=q0ð Þ2L3: ð33Þ

So in summary for s we expect a crossover from a linear,

internal-dissipation-dominated L dependence at short

lengths to a cubic length dependence given by hydrody-

namic friction alone.

Comparison with clamped MT experiments

Comparison with experiments (Pampaloni et al. 2006;

Taute et al. 2008) which measured lateral fluctuations of

clamped MTs reveals several interesting characteristics

that are in agreement with predictions (cf. Fig. 11). First,

the predicted mean linear growth of lp
*(L) agrees with

experiments, as a single exponent fit lp
* * Ld of the data

yields d = 1.05. Besides the linear growth, the experi-

mental data reveal a large spread of lp
* data points which

seems to grow approximately in proportion to the length.

This linearly growing experimental spread is likely linked

to the intrinsic spread of q0 values of different MT lattice

populations (Wade et al. 1990; Chretien 1991, 2000; Ray

et al. 1993). MTs with different number of protofilaments

will display different lattice twists ranging from q0 & 2p/

3 lm (for 12-PF MTs) to q0.2p=25 lm (for 13-PF MTs).

Keeping in mind the scaling lp
*(s) � q0

2s (cf. Eq. 22), we

would expect more than an order of magnitude variation of

measured lp
* values while the slope lp

*(s)/s should display a

constant spread.

Second, the data of Taute et al. (2008) (Fig. 11, circles)

indicate a nonmonotonic dependence with systematic

trends over several consecutive data points. This seems to

be phenomenologically well captured by the oscillatory

behavior of lp
*(L) in Eq. 22. On the other hand, the data of

Pampaloni et al. (2006) are definitely much more spread

and do not allow such a clear conclusion. Therefore, the

nonmonotonicity of lp
*(L) is at present experimentally dif-

ficult to confirm from the two existing experimental data-

sets taken together, although it is consistent with the data

within the error bars. As mentioned, the presence of dif-

ferent lattice populations (even within single MTs) could

give rise to a large spread of experimental data points and

an effective ‘‘washing out’’ of the nonmonotonic behavior

for different lattices within the same statistics.

Remarkably, the experimental data reveal that the large-

length plateau s � l/ where lp
* would become length

independent is not reached even for the longest MTs

(*50 lm). This is in phenomenological agreement with

the theory, as based on the long coherent helices observed

by Venier et al (1994) it would imply a very long l/. The

absence of the plateau in Pampaloni and Taute’s data

allows a lower estimate of the coherence length:

l/ [ 55 lm, which in turn would imply a large coupling

constant J [ 4kBT. The best comparison between theory

and experiments (cf. Fig. 11) gives lB = 25 mm, corre-

sponding to a rather high Young’s modulus Y � 9 GPa

higher than typically reported before (Gittes et al. 1993;

Venier et al. 1994; Mickey and Howard 1995; Felgner

et al. 1996; Kikumoto et al. 2006; Kurachi et al. 1995;

Takasone et al. 2002; Brangwynne et al. 2007; Janson

2004). However, the present value is well within the range

for proteins and protein tubes, with Y up to 19 GPa being

reported in literature (Kol et al. 2005). The higher value of

the bare Young’s modulus extracted form the present the-

ory should also not be a surprise, as in previous models all

MT conformational fluctuations were interpreted as origi-

nating from bending deformations alone. In our model,

both elastic and polymorphic fluctuations contribute, with

the latter being much softer and giving therefore dominant

contribution.

The best-fitting helix wavelength k � 7:5 lm is close to

the expected 6 lm corresponding to the twist (Wade et al.

1990; Chretien 1991, 2000; Ray et al. 1993) of the 14-PF

MT population. This is in agreement with the fact that,

in contrast to the in vivo situation, the large-pitch

(k � 25 lmÞ 13-PF MTs are likely underrepresented in the

data (Pampaloni et al. 2006; Taute et al. 2008). Indeed,

in vitro studies of taxol-copolymerized MTs display a MT

population consisting of a majority of 14 PFs (61%) while

13 PFs (32%) are less represented (Wade et al. 1990;

Chretien 1991, 2000; Ray et al. 1993). The in vitro con-

ditions therefore strongly shift the PF population away

from the preferred low-twist 13-PF MT towards the highly

twisted 14-PF MT.

The estimated lB is larger than in previous studies

(lB & 1–6 mm), where however polymorphic fluctuations

were neglected. This result leads us to the conclusion that,

if polymorphism is partially suppressed, one would mea-

sure much larger effective lp, as is in fact observed; for

example, in studies where 2D slab geometry is used (MTs

between two close glass slides), effective suppression of

the three-dimensional polymorphic helices or reduction of

their mobility is expected. A typical observation in such

cases is an extensive ‘‘intrinsic curvature’’ (of previously

unknown origin). Within our theory one could interpret this

curvature as pinned/quenched polymorphic helices pre-

vented from fluctuating freely by the confinement. These

effects could in general explain the dramatic variations of

measured lp values based on the presence/absence of

polymorphic ‘‘softening’’ in different experimental setups

and geometries.
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Now, let us consider the clamped MT dynamics as

investigated by Taute et al. (2008). Careful analysis of

Taute et al.’s data reveals a peculiar scaling of the longest

relaxation time with the length. Indeed, an independent

single exponent fit of Taute et al.’s data (2008) gives

s � La with a = 2.9 in the experimental range considered

(2.2 lm \ L \ 28 lm). This peculiar scaling can be

understood as originating from hydrodynamic relaxation of

a ‘‘wobbling’’ polymorphic chain. Using only the previ-

ously best-fitting parameters of the static data (Fig. 11)

j0=q0ð Þ2� 4:8� 10�3 and g = 10-3 Pa�s (viscosity of

water), we find a remarkable correspondence between the

theoretical prediction (Eq. 32), i.e., sth Lð Þ � LnextðLÞ=kBT

and the data of Taute et al. (2008), as shown in Fig. 12.

This zero-parameter prediction matches well the data for

larger lengths. For scaling comparison, it is interesting to

compare the data with the approximate theoretical relaxa-

tion time (Eq. 33), i.e., s Lð Þ � n?
3kBT j0=q0ð Þ2L3 (expression

strictly valid for L � 0.8 lm), which has a scaling law in

agreement with the single exponent fit of the data. Con-

sidering that n? � 1:6g� 2:3g is roughly length indepen-

dent in the experimental L range, one can assume n? � 2g
to obtain the prefactor as sth/L3 = 7.9 9 1014 s/m3.

Keeping in mind the simplicity of the interpretation (and

the lack of free parameters therein), this compares very

favorably with the best fit to the experimental data slope

sfit/L
3 = 6. 25 9 1014 s/m3 (cf. Fig. 12). Note that the

approximate value of sth seems to correspond slightly

better to the data, but this is likely of no physical signifi-

cance at this level of approximation. Indeed, the neglected

elastic modes other than the wobbling as well as the

approximation of the hydrodynamic friction should change

the details of the L dependence of next and thus of sth (but

not the general trends). Without more precise computation

of the dynamics we can be satisfied with the rather aston-

ishing agreement between theory and experiment for long

MTs. This leads us again to the conclusion that, in these

experiments, long MTs behave as almost rigid helical

polymorphic rotors whose motion is dominated by the

zero-energy ‘‘wobbling’’ mode and its hydrodynamic

dissipation.1

For very short MTs we should expect deviation from

this simple interpretation. In this regime the linearly scal-

ing internal dissipation, coming from the migration of

polymorphic defects, should start to dominate over pure

hydrodynamic friction, and for sufficiently short MT

lengths L! 0 we could measure nint from the limit value

of sth/L. It appears that, for the presently available data

with L [ 2 lm (Taute et al. 2008), this plateau regime is

not yet fully developed, enabling us to provide only an

upper numerical estimate for the inner dissipation

nint.4� 10�17 Ns:

Very short MTs

Comparison with experiments for even shorter chains

(L \p/q0) is more difficult due to the lack of data in

clamped MT experiments (L [ 2 lm). We can nevertheless

try a comparison with the results by the Dekker group for

the kinesin motor gliding assay of short MTs (Vanden

Heuvel et al. 2007, 2008). Besides some similarities with

the clamped fluctuating MTs, there are a number of dif-

ferences between the modeled situation of free 3D MTs and

the 2D gliding assay. In particular, the 2D geometry will

strongly perturb the preferentially three-dimensional helical

ground state. The active contribution of strong motor forces

to the trajectory of short MTs is an additional potential

perturbation. Effects of MT buckling and axial MT rotation

by kinesins likely become important. This said and ignoring

the differences, we can still compare (in order of magni-

tude) our and the Dekker group’s results (Vanden Heuvel

et al. 2007, 2008). For micron-sized MTs we obtain

lp & 0.8 lm, in approximate agreement with the *0.2 lm

value obtained by Vanden Heuvel et al. (2007). One should

mention that the two cited studies (Vanden Heuvel et al.

2007, 2008) give strongly different results depending on

whether free gliding or gliding assay with additional electric

field is considered. This difference results from the larger

deformations induced by the electric field. Therefore, the

comparison of our theory with the passive gliding assay

appears more appropriate and gives closer agreement.

Summary

We have suggested a new model that connects some of the

most persistent and confusing experimental findings con-

cerning microtubules. Starting from a rather broad spec-

trum of (apparently) disconnected observations, we

progressively built the case for a new hypothesis: the

existence of internal switching of the GDP–tubulin dimer

within the microtubule lattice. Why do microtubules

become helically wavy? Why do they switch to perma-

nently bent circular states? Why do they fluctuate anoma-

lously when clamped? These three dangling questions

became the central pillars for the present model. Surpris-

ingly, the simple assumption of a bistable GDP–tubulin

seems to explain these otherwise disparate phenomena in a

unified manner. As we know from recent experiments, the

bistability hypothesis of taxol-stabilized protofilaments is

indeed empirical fact (Elie-Caille et al. 2007). We have

shown here that the incorporation of such a bistable tubulin

1 In Appendix E we discuss possible effects induced by surface

attachment that could to some extent interfere with the ideal free

‘‘wobbling’’ motion in experiments.
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into a closed elastic lattice changes its free behavior,

introducing strong conformational competition among the

tubulin dimers. Tubulin units on opposite sides of the tube

now start to compete for which is going to switch to the

curved state. The lattice-induced frustration does not allow

all the tubulin dimers to minimize their energy individually

and to switch to their preferred states at the same time. The

symmetry breaking induced by this frustration mechanism

leads to a global microtubule lattice curving. Remarkably,

the curving direction is chosen randomly, and this has

profound consequences. The microtubule can chose

between many energetic ground states (as many states as

protofilaments in the lattice). When we graft one end of the

microtubule onto a substrate while still allowing it to chose

its bending direction freely, the strange energy degeneracy

generates a very unusual thermal motion. In this case the

microtubule’s motion follows, roughly speaking, a cone

and it rotates or ‘‘wobbles’’ at no energy cost around its

attachment tangent. This mode of motion, which is not to

be confused with material frame rotation (which is strictly

prohibited by grafting), is probably among the most strik-

ing outcomes of the two-state GDP–tubulin model. It is

exactly this behavior that allows consistent explanation of

the measurements of unusual lateral fluctuations of grafted

microtubules (Pampaloni et al. 2006; Taute et al. 2008).

Perspectives

We focus herein on modeling taxol-stabilized microtu-

bules, and the question naturally arises if the proposed

model affects ‘‘real’’ in vivo microtubules. On the one

hand the ‘‘weakly curved’’ state that is involved in the soft

polymorphic dynamics as described here seems to be (so

far) a specific signature of taxol-stabilized GDP–tubulin

state. On the other hand, we have argued that the naturally

occurring ‘‘high-curvature’’ GDP–tubulin state could

coexist with the straight state in the lattice under in vivo

conditions where MTs are stabilized with MAPs. The

involvement of this high-curvature state switching seems to

manifest itself in motor-driven straight to wavy transitions

of MTs in many living cell systems (Bicek et al. 2009;

Brangwynne et al. 2006, 2007; Keating et al. 1997; Kaech

et al. 1996; Samsonov et al. 2004). A particularly impres-

sive instance of such a polymorphic switching event

in vivo could be found in the process of axonal retraction,

where the whole MT cytoskeleton of the axon undergoes a

straight to helical transition and in turn retracts towards the

soma (Fridoon et al. 2000). To understand these dramatic

transitions in vivo, the present theory has to be advanced

and modified in two ways. First, the effect of large active

motor forces (rather than thermal ones) has to be taken into

account. In particular, one expects that, under strong

buckling forces, even thermodynamically unfavorable

states can become activated and constitute the ground state

upon large loads.

Second, in virtually all in vivo experiments, MTs are

essentially confined in 2D as the containing cells adsorb to

the glass substrate and assume a vary flat ‘‘fried-egg’’

configuration. Consequently, the measured properties will

not necessarily reflect the three-dimensional properties of

the molecule. This is particularly important for a MT

transformed to a polymorphic helix state where the con-

finement naturally entails a strong deformation (of the

initially three-dimensional ground state). Under confine-

ment the helical bending and torsional modes become

strongly coupled and bring about new physical effects. In

particular, a torsionally very soft helix will have a tendency

to unwind and form in extreme cases circular arcs, remi-

niscent of the rings observed in gliding assay experiments

(Amos 1991).

Finally, the local action of molecular motors could

trigger a switching to the highly curved state. While for

classical motors such as kinesin 1 direct evidence for such

a mode of action is still lacking, its relative kinesin 13

(Elie-Caille et al. 2007; Desai et al. 1999) has a well-

documented ability to actively trigger radial bending of

protofilaments. Other molecules such as katanin (Hartman

et al. 1998; Davis et al. 2002) have also been suggested to

perturb the lattice and trigger longer-range transitions

(Mohrbach 2007). This opens the intriguing question of

whether classical motors (kinesin 1 and dynein) could

trigger cooperative state transitions and even transmit

conformational signals along the tube. Considering the

present model for stabilized MTs (where high cooperativity

is inherent to the data interpretation), this idea might not be

far fetched. In fact, some evidence towards long-range

cooperativity of kinesin binding along the MT was pre-

sented by Muto et al. (2005), although these results still

await robust reproduction.

This brings us to the question of what experiments

should be performed in order to nail down the polymorphic

mechanism or any other mechanism for MT dynamics.

With microtubules being such delicate, subtle, and possibly

long-range-correlated objects (as suggested here), a general

rule of thumb for experiments should be: Treat them more

gently (do not confine) and observe more carefully (look

for correlated motion). A simple yet important experiment

would be a systematic direct observation of one-side

grafted but otherwise completely unconfined MTs fluores-

cently labeled along their full contour length. As men-

tioned, the presence of a quasi-2D confinement in thin

chambers as used in most MT experiments so far would

perturb the native helical MT state and should therefore be

explicitly avoided. The freely suspended gold-EM nano-

grid attachment geometry as used by Pampaloni et al.
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seems particularly suited for this task. Going beyond

Pampaloni et al., who labeled and traced the MT end only

(via a bead), the microtubules should be visualized along

the full contour in this geometry. Tracing several or all

points along the contour should reveal the predicted sinu-

soidal–helical nature of MT states. The present model

predicts a peculiar cooperatively rearranging helix state

with characteristic telltale curvature correlations between

different lattice positions, which are entirely absent for

usual semiflexible filaments. Directly observing collective

motions such as the suggested ‘‘wobbling’’ mode while

prohibiting trivial spatial rotations that could mask the

effects (by MT grafting) would constitute ‘‘smoking-gun’’

evidence for a polymorphism-related mechanism.

In conclusion, we have proposed a novel model for

internal MT lattice dynamics. We have shown that it

accounts for the otherwise mysterious MT helicity (Venier

et al. 1994) and the anomalous length-dependent lateral

fluctuation static (Pampaloni et al. 2006; Taute et al. 2008)

and dynamic scaling (Taute et al. 2008). The latter two

phenomena appear as mere consequences of the peculiar

‘‘wobbling motion’’ of the polymorphic, cooperatively

switching MT lattice. Although most of the observations

discussed here were made in vitro on taxol-stabilized MTs,

we provide arguments in favor of the existence of poly-

morphic MT states in vivo. We speculate that the implied

conformational bistability of tubulin and the allosteric

interaction are more than just nature’s way of modulating

the elastic properties of its most important cytoskeletal

mechano-element. It could also be a missing piece in the

puzzle of polymerization ‘‘catastrophes.’’ Even more

intriguingly, the predicted structural cooperativity could

allow for long-range conformational signaling along single

MTs and turn the latter into an efficient ‘‘confotronic’’ wire

transmitting regulatory signals across the cell.
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Appendix

A. Polymorphic phase coherence length

In this section, we derive the formula l/ ¼ N2b
8p2 2þ e2J=kBT
� �

for the polymorphic phase coherence length. To this end

we want to calculate the distribution of double junctions

that leads to angular orientation change DU on a scale l

much larger than the tubulin dimer b, yet still much smaller

than the total length, i.e., b 	 l 	 L. In this domain, at

each cross-section we have three possibilities:

1. State j = 0 with no double defect. The rotation angle

DU is attached to the internal lattice rotation,
DU
b � q0 ¼ 0:

2. State j = -1 for a left-handed double defect; DU
deviates from the internal twist: DU

b � q0 ¼ � 1
b

2p
N :

3. State j = ?1 for a right-handed double defect with
DU
b � q0 ¼ þ 1

b
2p
N :

On a length l we are throwing a three-sided dice l/b

times and the total rotation of DU away from the optimal

twist is DU� q0l ¼ 2p
N

Pl=b
n¼1 jn: The variation of the poly-

morphic phase with respect to the internal twist is then

D/ ¼ DU
l
� q0 ¼

1

l

2p
N

Xl=b

n¼1

jn:

For l/a � 1 the law of large numbers implies that the

random variable D/ ¼ 1
l

2p
N

Pl=b
n¼1 jn becomes Gaussian

distributed

p D/ð Þ / e
� D/2

2 D/2h i

with mean D/h i ¼ 0 and D/2
� �

¼ 1
l

2p
N

� �2 l
b

� �
j2
� �

(as

jnjmh i ¼ dnm j2
� �

). The average j2
� �

is given from the

Boltzmann factors of the three different states p0 ¼ 1
1þ2e�2bJ

and p�1 ¼ e�2bJ

1þ2e�2bJ ; so that j2
� �
¼ 2e�2bJ

1þ2e�2bJ : We can now

interpret the quantity 1= 2 D/2
� �� �

as coming from an

effective elastic energy over the interval l by writing
D/2

2 D/2h i ¼
1
2
bC/l D/ð Þ2, which allows us to identify the

effective stiffness

C/ ¼ kT
N2

8p2
2þ e2Jb
� �

b:

Note that this expression is valid for large enough J sup-

pressing higher-order defects, i.e., in the limit when mul-

tiple double defects sitting on a single lattice site (i.e.,

| j| [ 1) can be ignored.

B. The variation of the polymorphic modulus

In this appendix we compute the energy variation due to a

deviation of the polymorphic modulus |P| away from its

optimal value | P*| minimizing the energy, i.e., the change

of the number of switched PFs. We start with the energy

density of a MT cross-section

e ¼ B

2
j� jpolðpÞ
� �2þj2

1 c
p
N

p� sin2 p
N

p

 �
 �
 �

; ð34Þ

whose minimum is reached for p� ¼ N
2
� N

2p arcsin c:
Assuming a continuous number of PFs, the energy of a

state with p ¼ p� þ Dp switched PFs reads to quadratic

order
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eðp� þ DpÞ � eðp�Þ � p2B

N2
j2

1 cos
2p
N

p�
� 	

Dp2

¼ eðp�Þ þ p2B

N2
j2

1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p
Dp2;

where we used cosðp� arcsin cÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p
: Therefore,

the energy variation of a segment of length l reads

DE � p2B

N2
j2

1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p R l
0
dsðpðsÞ � p�ðsÞÞ2:

Now using P sð Þj j ¼ sin p
N p
� �

 

= sinðp=NÞ we can write the

energy variation to the same (quadratic) order as

DE � Bj2
1 sin2ðp=NÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p R l

0
dsðð P sð Þj j � P�j jÞÞ2:

Therefore, any deviation of P from its optimum state P* is

associated with an energy cost proportional to the length l

of the region in the unfavorable state.

C. Persistence length(s)

A definition of the persistence length, often used in sin-

gle-molecule experiments, is expressed in terms of the

lateral deviation q!¼ ðxðsÞ; y sð ÞÞ of a MT clamped at

s = 0 from its attachment axis as l�p sð Þ ¼ ð2=3Þs3=

q! sð Þ � q! sð Þ
� �� �2

D E
; where �h i is the statistical average.

The equivalence of the x and y directions implies that

l�p sð Þ ¼ 1=3s3= y sð Þ � y sð Þh ið Þ2
D E

: The second often used

alternative but more standard definition of the persistence

length—the tangent persistence length—is related to the

angular correlation lp s� s0ð Þ ¼ s� s0j j=Vðs� s0Þ with

variance V ¼ hy sð Þ � hy s0ð Þ
� �2
D E

(by symmetry we have

the same expression with hx). Whereas for an ideal WLC

l�p ¼ lp ¼ lB is position and definition independent, this is

not the case for a polymorphic chain (see Fig. 13). For

small angular deformations, the decoupling of the chain’s

fluctuations into polymorphic and purely elastic contri-

butions allows one to decompose the persistence length as

lp
-1 = lpol

-1 ? lB
-1, this result being valid for both defini-

tions of the persistence length.

We first focus on the first definition, for the clamped

persistence length. In this case the polymorphic persistence

length l�polðsÞ is given by

l�polðsÞ ¼ 1=3s3= ypol sð Þ � ypol sð Þ
� �� �2

D E
; ð35Þ

where ypol(s) is the lateral polymorphic displacement in the

y direction. Integrating over the rotational zero mode

readily implies ypol sð Þ
� �

¼ 0 (see Eq. 18). From Eq. 19

one can write

y2
pol sð Þ

D E
¼
Zs

0

Zs

0

Gðs1; s2Þds1ds2

with the angular correlation function Gðs1; s2Þ ¼
hy;polðs1Þhy;polðs2Þ
� �

given by the integration over the zero

mode

Gðs1; s2Þ ¼
Z2p

0

d/0

2p
G0ðs1; s2;/0Þ ð36Þ

of the angular correlation function at fixed value of

/0, i.e., G0ðs1; s2;/0Þ ¼ hy;polðs1Þhy;polðs2Þ
� �

j/0
: This last

expression, from the relation hy;polðsÞ ¼ j0

R s

0
sin e/ s0ð Þ



þq0s0 þ /0Þds0 (cf. Eq. 17), is explicitly given by

G0ðs1; s2;/0Þ ¼ j2
0

Zs1

0

Zs2

0

sin e/ sð Þ þ q0sþ /0


 �D

sin e/ s0ð Þ þ q0s0 þ /0


 �E
j/0

dsds0:

ð37Þ

After integration over /0 and using the known result

cos e/ s1ð Þ � e/ s2ð Þ

 �D E

¼ e� s1�s2j j=2l/ which results from

the WLC-type probability distribution of the field e/; i.e.,

P½e/� � expð� l/
2

R L

0
dse/02Þ, one obtains the rotational

invariant correlation function in the form

Gðs1; s2Þ ¼
j2

0

2

Zs1

0

Zs2

0

e
� s�s0j j

2l/ cos q0ðs� s0Þð Þdsds0: ð38Þ

Fig. 13 Different definitions of the persistence length can deviate from

each other for a polymorphic chain: the ‘‘clamped persistence length’’ l�p
(thick line) and the ‘‘tangent persistence length’’ lp (thin line) (for

lB = 10 mm, l/ = 50 lm, j0 = 0.03 lm-1, and q0 = 0.7 lm-1)
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Computation of the integrals in Eq. 38 gives finally the

following expression for the polymorphic contribution to

the transverse displacement:

ypolðsÞ2
D E

¼ 2j2
0l/

3ð1þ 4l2/q2
0Þ

4
P1 � e

� s
2l/P2 cos q0sð Þ

n

þe
� s

2l/P3 sinðq0sÞ
o ð39Þ

with P1ðsÞ¼ 24l3/ 1� 6xþ x2ð Þ�3l/ 1þ x� x2 � x3ð Þs2 þ
1þ 3xþ 3x2 þ x3ð Þs3;P2ðsÞ¼ 24l3/ 1� 6xþ x2ð Þ þ12l2/
1� 2x� 3x2ð Þs, and P3(s) = 192l/

4 q0(1 - x) ? 24l/
3 q0

(3 ? 2x - x2)s, where we have introduced the notation

x = 4l/
2 q0

2.

From Eq. 39, we get the polymorphic persistence length

l�polðsÞ defined in Eq. 35, and in turn the global persistence

length l�pðsÞ depicted in Fig. 13. Its physical interpretation

is discussed in the main text.

We now consider the second definition of the persis-

tence length lp s� s0ð Þ ¼ s� s0j j=Vðs� s0Þ: From Eq. 38,

the angular variance Vpol can easily be evaluated as

VpolðsÞ ¼
2j2

0l/
1þ 4l2

/q2
0

s�
2l/ 1� 4q2

0l2
/


 �

1þ 4l2/q2
0

0

@

1

A

þ
4j2

0l2/e
� s

2l/

1þ 4l2/q2
0


 �2
1� 4q2

0l2
/


 �
cos q0sð Þ




�4q0l/ sin q0sð Þ
�

ð40Þ

The resulting persistence length lp (depicted in Fig. 13)

shows a rich behavior similar to the persistence length l�p sð Þ
but displays a functional form distinct from the latter.

However, as expected, both curves reach the same

asymptotic value at very short and very long MT lengths.

D. Zero-mode dynamics

The evolution of the zero mode /0 tð Þ is given by Eq. 28 as

d

dt
/0 tð Þ ¼ 1

ntot

L�1

ZL

0

C/ s; tð Þds ð41Þ

with a friction constant ntot = nint ? next, where next is

given by Eq. 27. The correlation function of the thermal

white noise C/ s; tð Þ is C/ s; tð ÞC/ s0; t0ð Þ
� �

¼ Ddðs�
s0Þdðt � t0Þ with a coefficient D that can be determined in

the following manner. Notice first that /0 performs free

Brownian motion and that its quadratic fluctuations

necessarily satisfy the relation /0 tð Þ � /0 0ð Þð Þ2
D E

¼ 2kBT
Lntot

t:

On the other hand, integrating Eq. 41 yields

/0 tð Þ � /0 0ð Þ ¼ n�1
tot

Z t

0

1

L

ZL

0

C s; t0ð Þds

0

@

1

Adt0; ð42Þ

and exploiting the white noise type auto-correlation of

C one obtains /0 tð Þ � /0 0ð Þð Þ2
D E

¼ D
n2

totL
t; from which we

readily deduce D = 2ntotkBT, as expected from the fluc-

tuation–dissipation theorem.

The relaxation time is generally given from the time

correlation function \ypol(s, 0)ypol(s, t)[ with the lateral

position ypolðs; tÞ ¼ j0

q2
0

ðsq0 cos /0 tð Þ þ að Þ þ sin /0 tð Þ þ að Þ
� sin q0sþ /0 tð Þ þ að ÞÞ obtained from Eq. 14 with l/ � s.

The average must first take into account all statistically

equivalent values of angular orientations a 2 0; 2p½ �; such

that ypolðs; 0Þypolðs; tÞ
� �

¼
R 2p

0
ypolðs; 0Þypolðs; tÞ
� �

a
da
2p ; and

we obtain

ypolðs; 0Þypolðs; tÞ
� �

¼ y2
polðsÞ

D E
cosð/0 tð Þ � /0 0ð ÞÞh i

ð43Þ

with \y2
polðsÞ[ ¼ j2

0

q2
0

s2

2
þ 1�cosðq0sÞ

q2
0

� s sinðq0sÞ
q0


 �
; corre-

sponding to the static result (Eq. 39) in the limit

s/l/ 	 1. With 42 defining a simple Gaussian random

walk process, one straightforwardly obtains

cosð/0 tð Þ � /0 0ð ÞÞh i ¼ e�t=s ð44Þ

with the relaxation time given by

s ¼ L
ntot

kBT
: ð45Þ

E. Comment on MT surface attachment

and the robustness of ‘‘wobbling’’

Throughout this work we have assumed that the free

rearrangement of the polymorphic lattice states is not sig-

nificantly hindered by the covalent surface attachment of

the MT, as e.g. performed by Pampaloni et al. (2006) and

Taute et al. (2008). This assumption is integral to the

‘‘wobbling’’ motion and in turn to understanding the static

and dynamic data scaling. It therefore deserves closer

consideration.

In the experiments by Pampaloni et al. (2006) and Taute

et al. (2008), the adsorbed MT part is attached to a gold

(electron microscopy grid) surface via thiol groups. It is

likely that �1–2 protofilaments will establish localized

chemical contacts with the gold microgrid. While sub-

stantial perturbation of the dimer such as denaturation

appears unlikely, it is unclear to what extent this procedure

will perturb the inner (polymorphic) dynamics of the entire

tubulin dimer units. In principle, one can anticipate two
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plausible scenarios that would interfere to a varying degree

with the free ‘‘wobbling’’ motion:

S1. Due to high cooperativity (large coupling J) the

polymorphic state transition can propagate within a

certain penetration depth into the adsorbed (straight-

planar) MT section.

S2. The cooperativity is too weak to compete with the

constraints imposed by the surface (including chem-

ical perturbations), and the polymorphic transition

does not propagate into the straight adsorbed MT

section.

In both cases we have a nonvanishing deflection angle

between a forced (adsorbed) planar section and the free

helical section direction, effectively causing the charac-

teristic MT ‘‘kink’’ at the surface interface. However, the

rotational mobility of this ‘‘kink’’ (wobbling mode) which

is integral to our theory will be affected in a slightly dif-

ferent manner.

If in case S1, in the adsorbed section, the polymorphic

order parameter P can rearrange to some extent (by

switching the monomer states without causing detectable

deformation) except for possibly in the few surface-inter-

acting dimers, then the effects of the ‘‘wobbling’’ motion

will be hindered only mildly in the following sense. To

retrieve the anomalous lateral fluctuations it is indeed

enough for the wobbling angle /0 to move freely in a

certain nonvanishing angular interval. A single complete or

multiple rotations of the order parameter P~ are not strictly

necessary for the ‘‘hinge’’ effect, and they are in fact

equivalent in lateral projection (as in experiment) to the

motion of the wobbling angle /0 in the smaller interval [-

p/2, ?p/2]. Note that even intervals smaller than this will

lead to a similar phenomenology (in particular, dynamic

and static

variable scalings with length). Thus, the conical hinge-like

motion is in a sense robust with respect to a limited local

rotational hindrance perturbation in the adsorbed region.

In scenario S2 the situation is somehow simpler as the

polymorphic dynamics of the adsorbed region is not

involved in the process (the polymorphic order parameter

vanishes there: P~ ¼ 0). Wobbling is realized through a

coherent rearrangement of the free MT section alone,

without strong coupling to the adsorbed region.

Although both attachment scenarios S1 and S2 appear to

some extent plausible, at present it is difficult to make

reliable statements about their respective likelihood. In fact

only a posteriori can we cautiously state that, based on the

experimental static and dynamic measurement evidence,

the chain ‘‘wobbles’’ to a high enough extent to display the

effects that we observe.
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ab-Tubulin at 3.5 Å resolution. J Mol Biol 313:10451–10457

Mandelkow EM, Mandelkow E, Milligan RA (1991) Microtubules

dynamics and microtubules caps: a time-resolved cryoelectron

microscopy study. J Cell Biol 114:977–991

Mickey B, Howard J (1995) Rigidity of microtubules is increased by

stabilizing agents. J Cell Biol 130:909–917

Mitchison T, Kirschner MW (1984) Dynamic instability of microtu-

bule growth. Nature 312:237–242

Mohrbach H, Kulic IM (2007) Motor driven microtubule shape

fluctuations: force from within the lattice. Phys Rev Lett 99:

218102

Mohrbach H, Johner A, Kulic IM (2010) Tubulin bistability and

polymorphic dynamics of microtubules. Phys Rev Lett 105:

268102

Muto E, Sakai H, Kaseda K (2005) Long-range cooperative binding

of kinesin to a microtubule in the presence of ATP. J Cell Biol

168:691

Nogales E, Wolf SG, Downing KH (1998) Structure of the ab tubulin

dimer by electron crystallography. Nature 391:199–203

Nogales E, Whittaker M, Milligan RA, Downing KH (1999) High

resolution model of the microtubule. Cell 96:79–88

Nogales E, Wang HW, Niederstrasser H (2003) Tubulin rings: which

way do they curve ?. Curr Opin Struct Biol 13:256–261

Pampaloni F, Lattanzi G, Jonas A, Surrey T, Frey E, Florin EL (2006)

Thermal fluctuations of grafted microtubules provide evidence of

a length-dependent persistence length. Proc Natl Acad USA

103:10248–10253

Ray S, Meyhofer E, Milligan RA, Howard J (1993) Kinesin follows

the microtubule’s protofilament axis. J Cell Biol 121:1083–1093

Samsonov A, Yu J-Z, Rasenick M, Popov SV (2004) Tau interaction

with microtubules in vivo. J Cell Sci 117:6129

Takasone T, Juodkazis S, Kawagishi Y, Yamaguchi A, Matsuo S,

Sakakibara H, Nakayama H, Misawa H (2002) Flexural rigidity

of a single microtubule. Jpn J Appl Phys 41:3015–3019

Taute KM, Pampaloni F, Frey E, Florin E-L (2008) Microtubule

dynamics depart from the wormlike chain model. Phys Rev Lett

100:028102

Vale RD, Coppin CM, Malik F, Kull FJ, Milligan RD (1994) Tubulin

GTP hydrolysis influences the structure, mechanical properties

and kinesin-driven transport of microtubules. J Biol Chem 269:

23769–23775

Vanden Heuvel MGL, Bolhuis S, Dekker C (2007) Persistence length

measurements from stochastic single-microtubule trajectories.

Nano Lett 7:3138

Vanden Heuvel MGL, de Graaff MP, Lemay SG, Dekker C (2007)

Electrophoresis of individual microtubules in microchannels.

Proc Natl Acad Sci USA 104:7770–7775

Vanden Heuvel MGL, de Graaff MP, Dekker C (2008) Microtubule

curvatures under perpendicular electric forces reveal a low

persistence length. Proc Natl Acad Sci USA 105:7941

Venier P, Maggs AC, Carlier MF, Pantaloni D (1994) Analysis of

microtubule rigidity using hydrodynamic flow and thermal

fluctuations. J Biol Chem 269:13353

Wade RH, Chrétien D, Job D (1990) Characterization of microtubule

protofilament numbers. How does the surface lattice accommo-

date?. J Mol Biol 212:775–786

Xiao H, Verdier-Pinard P, Fernandez-Fuentes N, Burd B, Angeletti R,

Fiser A, Horwitz SB, Orr GA (2006) Insights into the mechanism

of microtubule stabilization by taxol. Proc Natl Acad Sci USA

103:10166–10173

Eur Biophys J (2012) 41:217–239 239

123


	Cooperative lattice dynamics and anomalous fluctuations of microtubules
	Abstract
	Introduction
	Short review of what is understood about microtubules
	What is not understood about microtubules
	Mechanical properties of stabilized MTs
	Helices and rings
	The soft shear model

	Idea of polymorphic microtubule dynamics
	Conformational symmetry breaking and helix formation
	In vivo implications of microtubule polymorphism

	The polymorphic tube model
	Phase diagram
	Polymorphic phase fluctuations
	The wobbling mode
	Persistence length anomalies
	Untwisted MTs

	Polymorphic phase dynamics

	Comparison with clamped MT experiments
	Very short MTs

	Summary
	Perspectives
	Acknowledgments
	Appendix
	A. Polymorphic phase coherence length
	B. The variation of the polymorphic modulus
	C. Persistence length(s)
	D. Zero-mode dynamics
	E. Comment on MT surface attachment and the robustness of ‘‘wobbling’’

	References


